某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì).
(1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià);
(2)若由于地形限制,該池的長(zhǎng)和寬都不能超過(guò)16米,試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/4/11v3z2.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的,總有;
②;
③當(dāng),且時(shí),成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請(qǐng)解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請(qǐng)給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數(shù)f(x)的最小值.
(2)對(duì)于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)若的最小值記為,求的解析式.
(2)是否存在實(shí)數(shù),同時(shí)滿足以下條件:①;②當(dāng)的定義域?yàn)閇,]時(shí),值域?yàn)閇,];若存在,求出,的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
湛江為建設(shè)國(guó)家衛(wèi)生城市,現(xiàn)計(jì)劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)市區(qū)的影響度與所選地
點(diǎn)到市區(qū)的距離有關(guān),對(duì)赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點(diǎn)到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對(duì)兩市區(qū)的總影響度為y.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)赤坎區(qū)的影響度與所選地點(diǎn)到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對(duì)霞山區(qū)的影響度與所選地點(diǎn)到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最。咳舸嬖,求出該點(diǎn)到赤坎區(qū)的距離;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為實(shí)常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(2)設(shè),若不等式在有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間(單位:天)變化的函數(shù)關(guān)系式近似為若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.
(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?
(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a()個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)在海拔xm處的大氣壓強(qiáng)是yPa,y與x之間的函數(shù)關(guān)系為y=cekx,其中c、k為常量.已知某天的海平面的大氣壓為1.01×105Pa,1000m高空的大氣壓為0.90×105Pa,求600m高空的大氣壓強(qiáng).(保留3位有效數(shù)字)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*),經(jīng)過(guò)點(diǎn)(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com