已知定義域為R的函數(shù)是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷的單調(diào)性并證明;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.

(Ⅰ);(Ⅱ)在R上為減函數(shù),證明詳見解析;(Ⅲ).

解析試題分析:(Ⅰ)思路一、由可求得a的值;
思路二、由于是R上的奇函數(shù),所以,由此也可求得a的值.
(Ⅱ)思路一:根據(jù)函數(shù)單調(diào)性的定義證明;思路二:利用導(dǎo)數(shù)證明.
(Ⅲ)因是奇函數(shù),從而不等式等價于

在R上為減函數(shù),由上式得:解此不等式即可.
試題解析:(I)法一、函數(shù)的定義域為R,因為是奇函數(shù),所以,
,故
法二、由是R上的奇函數(shù),所以,故
再由
通過驗證來確定的合理性             4分
(Ⅱ)由(1)知
由上式易知在R上為減函數(shù).
證明:法一、由(1)知
設(shè),則
所以,所以在R上為減函數(shù).              8分
法二、由(1)知
求導(dǎo)得:,所以在R上為減函數(shù).          8分
(Ⅲ)又因是奇函數(shù),從而不等式等價于

在R上為減函數(shù),由上式得:
即對一切
從而              12分
考點:1、函數(shù)的單調(diào)性和奇偶性;2、不等關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的值;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)).
(1)討論的奇偶性;
(2)當(dāng)時,求的單調(diào)區(qū)間;
(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)對于任意實數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是定義在上的減函數(shù),滿足.
(1)求證:
(2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且,若,恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對所有恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),試判斷此函數(shù)上的單調(diào)性,并求此函數(shù)
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時,在曲線上是否存在兩點,使得曲線在兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標(biāo)的取值范圍;若不存在,請說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個函數(shù),使得同時滿足以下三個條件:①定義域,且;②當(dāng)時,;③在中使取得最大值時的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)

查看答案和解析>>

同步練習(xí)冊答案