【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)軸方程為ρcos(θ﹣ )=2
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值及其對(duì)應(yīng)的點(diǎn)P的直角坐標(biāo).

【答案】
(1)解:曲線C的參數(shù)方程為 (α為參數(shù)),曲線C的直角坐標(biāo)方程: =1,

直線l的極坐標(biāo)軸方程為ρcos(θ﹣ )=2 ,展開 ,ρcosθ+ρsinθ=4,

∴直線l的直角坐標(biāo)方程為x+y=4.


(2)解:設(shè)點(diǎn)P的坐標(biāo)為 ,

得P到直線l的距離d= ,令sinφ= ,cosφ=

則d= ,顯然當(dāng)sin(α+φ)=﹣1時(shí),dmax= .此時(shí)α+φ=2kπ+ ,k∈Z.

∴cosα= =﹣sinφ=﹣ .sinα=sin =﹣cosφ=﹣ ,即P


【解析】(1)利用cos2α+sin2α=1可把曲線C的參數(shù)方程 (α為參數(shù))化為直角坐標(biāo)方程,直線l的極坐標(biāo)軸方程為ρcos(θ﹣ )=2 ,展開 ,利用 即可化為直角坐標(biāo)方程.(2)設(shè)點(diǎn)P的坐標(biāo)為 ,利用點(diǎn)到直線的距離公式可得P到直線l的距離d= ,再利用三角函數(shù)的單調(diào)性即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,ADCD,ABCD,AB=AD=CD=2,點(diǎn)M是線段EC的中點(diǎn).

(1)求證:BM平面ADEF;

(2)求證:平面BDE平面BEC;

(3)求平面BDM與平面ABF所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,

(1)求多面體ABCDS的體積;
(2)求二面角A﹣SB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)接正方形邊長為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)接正方形內(nèi)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 (a>b>0)如圖,已知橢圓C:的左、右焦點(diǎn)分別為F1、F2 , 離心率為 ,點(diǎn)A是橢圓上任一點(diǎn),△AF1F2的周長為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(﹣4,0)任作一動(dòng)直線l交橢圓C于M,N兩點(diǎn),記 ,若在線段MN上取一點(diǎn)R,使得 ,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“六一”聯(lián)歡會(huì)上設(shè)有一個(gè)抽獎(jiǎng)游戲.抽獎(jiǎng)箱中共有12張紙條,分一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、無獎(jiǎng)四種.從中任取一張,不中獎(jiǎng)的概率為,中二等獎(jiǎng)或三等獎(jiǎng)的概率是.

(Ⅰ)求任取一張,中一等獎(jiǎng)的概率;

(Ⅱ)若中一等獎(jiǎng)或二等獎(jiǎng)的概率是,求任取一張中三等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓.

(1)求證兩圓相交;

(2)求兩圓公共弦所在直線的方程;

(3)求過兩圓的交點(diǎn)且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)x個(gè)

2

3

4

5

加工的時(shí)間y小時(shí)

2.5

3

4

4.5

1在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

2求出y關(guān)于x的線性回歸方程bxa,

3試預(yù)測加工20個(gè)零件需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,=(6,1),=(xy),=(-2,-3),且.

(1)xy的關(guān)系式;

(2),求xy的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案