【題目】若拋物線的焦點為,是坐標原點,為拋物線上的一點,向量與軸正方向的夾角為60°,且的面積為.
(1)求拋物線的方程;
(2)若拋物線的準線與軸交于點,點在拋物線上,求當取得最大值時,直線的方程.
科目:高中數學 來源: 題型:
【題目】某校高一、高二年級的全體學生都參加了體質健康測試,測試成績滿分為100分,規(guī)定測試成績在之間為“體質優(yōu)秀”,在之間為“體質良好”,在之間為“體質合格”,在之間為“體質不合格”.現從這兩個年級中各隨機抽取7名學生,測試成績如下:
其中m,n是正整數.
(Ⅰ)若該校高一年級有280學生,試估計高一年級“體質優(yōu)秀”的學生人數;
(Ⅱ)若從高一年級抽取的7名學生中隨機抽取2人,記X為抽取的2人中為“體質良好”的學生人數,求X的分布列及數學期望;
(Ⅲ)設兩個年級被抽取學生的測試成績的平均數相等,當高二年級被抽取學生的測試成績的方差最小時,寫出m,n的值.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程.
(Ⅰ)求直線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于,兩點,求的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)設g(x)=log4,若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為:(為參數),的參數方程為:(為參數).
(1)化、的參數方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標方程為:,曲線上的點對應的參數,曲線上的點對應的參數,求的中點到直線的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,直線,圓的方程為,直線被圓截得的弦長與橢圓的短軸長相等,橢圓的左頂點為,上頂點為.
(1)求橢圓的方程;
(2)已知經過點且斜率為直線與橢圓有兩個不同的交點和,請問是否存在常數,使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】去年年底,某商業(yè)集團公司根據相關評分細則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分數按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標準如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計該商業(yè)集團各連鎖店評估得分的眾數和平均數;
(2)從評估分數不小于80分的連鎖店中任選2家介紹營銷經驗,求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平行四邊形中,,,,是EA的中點(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com