19.集合M={x|y=$\sqrt{x-3}$+$\sqrt{3-x}$},N={y|y=$\sqrt{x-3}$•$\sqrt{3-x}$} 則下列結論正確的是(  )
A.M=NB.M∩N={3}C.M∪N={0}D.M∩N=∅

分析 化簡集合M、N,根據(jù)集合相等、交集與并集的定義即可判斷選項的正誤.

解答 解:集合M={x|y=$\sqrt{x-3}$+$\sqrt{3-x}$}={x|$\left\{\begin{array}{l}{x-3≥0}\\{3-x≥0}\end{array}\right.$}={x|x=3}={3},
N={y|y=$\sqrt{x-3}$•$\sqrt{3-x}$}={y|y=0}={0};
∴M≠N,M∪N={0,3},M∩N=∅,選項D正確.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=2x+$\frac{2}{{2}^{x}}$的最小值為(  )
A.1B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.食品安全問題越來越引起人們的重視,農藥、化肥的濫用對人民群眾的建康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農村合作社會每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入P、種黃瓜的年收入Q與投入a(單位:萬元)滿足P=80+4$\sqrt{2a}$,Q=$\frac{1}{4}$a+120,設甲大棚的投入為x(單位:萬元),每年兩個大棚的總收益為f(x)(單位:萬元).
(1)求f(50)的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益f(x)最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知sinx=$\frac{3}{5}$,則sin2x的值為( 。
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$\frac{12}{25}$或$-\frac{12}{25}$D.$\frac{24}{25}$或-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知A,B,C,D四點共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=$\frac{{2\sqrt{7}}}{7}$.
(Ⅰ)求sin∠DBC;
(Ⅱ)求AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合U=R,A={x|2≤x≤8},B={x|1<x<6},C={x|x>a}.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知等比數(shù)列{an}的各項均為正數(shù),且滿足:a1a9=4,則數(shù)列{log2an}的前9項之和為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列Sn為等比數(shù)列{an}的前n項和,S8=2,S24=14,則S2016=( 。
A.2252-2B.2253-2C.21008-2D.22016-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.從總體中抽取一個樣本:3、7、4、6、5,則總體標準差的點估計值為$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案