13.如圖所示的三個(gè)圖中,(1)是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖已經(jīng)畫(huà)出.(單位:cm)
(1)作出該多面體的俯視圖;
(2)求多面體的體積.

分析 (1)依據(jù)畫(huà)圖的規(guī)則作出其俯視圖即可;
(2)此幾何體是一個(gè)長(zhǎng)方體削去了一個(gè)角,由圖中的數(shù)據(jù)易得幾何體的體積.

解答 解:(1)如圖
(2)它可以看成一個(gè)長(zhǎng)方體截去一個(gè)小三棱錐,
設(shè)長(zhǎng)方體體積為V1,小三棱錐的體積為V2,則根據(jù)圖中所給條件得:V1=6×4×4=96(cm3),V2=$\frac{1}{3}•\frac{1}{2}•2•2•2$=$\frac{4}{3}$(cm3),
∴V=V1-V2=$\frac{284}{3}$(cm3).

點(diǎn)評(píng) 本題考查由三視圖求面積、體積,求解的關(guān)鍵是由視圖得出幾何體的長(zhǎng)、寬、高等性質(zhì),熟練掌握各種類型的幾何體求體積的公式,可使本題求解更快捷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列方程的解集
(1)2sin2x-4sinxcosx+4cos2x=1
(2)4cos2x-2sinxcosx-1=0
(3)cos2x-4sin2x=sin2x-2cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知在△ABC中,∠B=60°,a=3,b=$\sqrt{19}$.
(1)求c的大;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA=$\frac{3}{2}$,連接CE并延長(zhǎng)交AD于F.
(Ⅰ)求證:AD⊥平面CFG;
(Ⅱ)求三棱錐VP-ACG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S-ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長(zhǎng)AB=2$\sqrt{2}$,則正三棱錐S-ABC的體積為$\frac{4}{3}$,其外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1.
(1)求異面直線A1B1與BD所成角的大小;
(2)設(shè)直線AB1與平面ABCD所成的角為60°,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若長(zhǎng)方體的一個(gè)頂點(diǎn)上三條棱長(zhǎng)分別是1、1、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的體積是(  )
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD 
(1)求二面角B-AD-F的大;
(2)求直線BD與EF所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫(huà)出散點(diǎn)圖,并說(shuō)明銷售額y與廣告費(fèi)用支出x之間是正相關(guān)還是負(fù)相關(guān)?
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y=bx+a$,$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},a=\overline y-\hat b\overline x$,求出回歸直線方程.
(3)據(jù)此估計(jì)廣告費(fèi)用為10時(shí),銷售收入y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案