極坐標(biāo)系中,由三條曲線圍成的圖形的面積是( )

A.B.C.D.

A

解析試題分析:三條曲線的方程可化為,三條直線圍成一個(gè)三角形,三頂點(diǎn)的坐標(biāo)分別為(0,0),(1,0), ,因此面積,答案選A.
考點(diǎn):極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過(guò)橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說(shuō)明理由.
(3)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦, MNAB,求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

22.(本題滿(mǎn)分15分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;


 
(Ⅲ)過(guò)A、B分別作拋物C的切線交于點(diǎn)M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜
率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在極坐標(biāo)系中,圓的垂直于極軸的兩條切線方程分別為(    ).

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在極坐標(biāo)系中,圓的圓心到極軸的距離為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

極坐標(biāo)方程(-1)()=(0)表示的圖形是(  )

A.兩個(gè)圓 B.兩條直線
C.一個(gè)圓和一條射線 D.一條直線和一條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知方向向量為v=(1,)的直線l過(guò)點(diǎn)(0,-2)和橢圓C:
的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿(mǎn)足cot∠MON ≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存
在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

直線(t為參數(shù))與曲線=1的位置關(guān)系是(    )

A.相離B.相交C.相切D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案