已知定點(diǎn),,是圓上任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的中垂線與直線相交于點(diǎn),則點(diǎn)的軌跡是

A.橢圓             B.雙曲線           C.拋物線           D.圓

 

【答案】

B

【解析】

試題分析:由N是圓O:x2+y2=1上任意一點(diǎn),可得ON=1,且N為MF1的中點(diǎn)可求MF2,結(jié)合已知由垂直平分線的性質(zhì)可得PM=PF1,從而可得|PF2-PF1|=|PF2-PM|=MF2=2為定值,由雙曲線的定義可得點(diǎn)P得軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線解:連接ON,由題意可得ON=1,且N為MF1的中點(diǎn)∴MF2=2,∵點(diǎn)F1關(guān)于點(diǎn)N的對(duì)稱點(diǎn)為M,線段F1M的中垂線與直線F2M相交于點(diǎn)P,由垂直平分線的性質(zhì)可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由雙曲線的定義可得點(diǎn)P得軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線,故選:B

考點(diǎn):雙曲線的定義

點(diǎn)評(píng):本題以圓為載體,考查了利用雙曲線的定義判斷圓錐曲線的類型的問(wèn)題,解決本題的關(guān)鍵是由N為圓上一點(diǎn)可得ON=1,結(jié)合N為MF1的中點(diǎn),由三角形中位線的性質(zhì)可得MF2=2,還要靈活應(yīng)用垂直平分線的性質(zhì)得到解決本題的第二個(gè)關(guān)鍵點(diǎn)|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,從而根據(jù)圓錐曲線的定義可求解,體現(xiàn)了轉(zhuǎn)化思想的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆山西大學(xué)附中高三第二學(xué)期高三第一次模擬測(cè)試數(shù)學(xué)試卷 題型:解答題

(12分)
已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山西大學(xué)附中高三第二學(xué)期高三第一次模擬測(cè)試數(shù)學(xué)試卷 題型:解答題

(12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.

   (1)求動(dòng)點(diǎn)E的軌跡方程;

           (2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆河南省高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E。

(1)求動(dòng)點(diǎn)E的軌跡方程;

(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.

(1)求動(dòng)點(diǎn)E的軌跡方程;

(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省鶴崗一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案