17.已知函數(shù)f(x)=loga(ax-1)(a>1)且x>1,求使f(2x)=f-1(x)的x的值.

分析 求反函數(shù)可得f-1(x)=loga(ax+1),可得loga(a2x-1)=loga(ax+1),解方程可得.

解答 解:∵y=f(x)=loga(ax-1),
∴ax-1=ay,解得x=loga(ay+1),
∴反函數(shù)f-1(x)=loga(ax+1),
故f(2x)=f-1(x)可化為loga(a2x-1)=loga(ax+1),
可得a2x-1=ax-1,即(ax+1)(ax-1)=ax+1,
∵ax+1>1,∴ax-1=1,即x=loga2,

點評 本題考查反函數(shù),涉及對數(shù)的運(yùn)算和指數(shù)函數(shù)的值域,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,角A,B,C所對的邊分別是a,b,c,已知b=3,A=30°,若解此三角形時有兩解,則a的取值范圍為$\frac{3}{2}$<a<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正項數(shù)列{an},a1=1,前n項和Sn滿足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n≥2),則a10=( 。
A.72B.80C.90D.82

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在數(shù)列{an}中,若滿足$\frac{{a}_{n+2}}{{a}_{n+1}}-\frac{{a}_{n+1}}{{a}_{n}}=d(n∈{R}^{+},d為常數(shù))$為“等差比數(shù)列”,已知在等差比數(shù)列中,a1=a2=1,a3=3,則$\frac{{a}_{2015}}{{a}_{2013}}$=4×20132-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sin(x+$\frac{π}{4}$)=$\frac{1}{3}$,則cos(x+$\frac{3π}{4}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某批200件產(chǎn)品的次品率為2%,現(xiàn)從中任意的依次抽取3件進(jìn)行檢驗,以不放回的方式抽取,抽到次品不少于2件的概率是$\frac{59}{65670}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}中的首項a1=1,且滿足an+1=$\frac{1}{2}$an+$\frac{1}{2n}$,則此數(shù)列的第三項是( 。
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個集合中,是空集的是( 。
A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某品牌電視專賣店,在“五一”期間設(shè)計一項有獎促銷活動:每購買一臺電視,即可通過電腦產(chǎn)生一組3個數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎:
隨機(jī)數(shù)組的特征3個數(shù)字均相同恰有2個數(shù)字相同其余情況
獎金(單位:元)5002000
商家為了了解計劃的可行性,估計獎金數(shù),進(jìn)行了隨機(jī)模擬試驗,產(chǎn)生20組隨機(jī)數(shù)組,每組3個數(shù),試驗結(jié)果如下所示:
975,146,858,513,277,645,903,756,111,783,
834,527,060,089,221,368,054,669,863,175.
(Ⅰ)請根據(jù)以上模擬數(shù)據(jù)估計:若活動期間商家賣出100臺電視應(yīng)付出獎金多少元?
(Ⅱ)在以上模擬數(shù)據(jù)的前5組數(shù)中,隨機(jī)抽取2組數(shù),試寫出所有的基本事件,并求至少有一組獲獎的概率.

查看答案和解析>>

同步練習(xí)冊答案