已知等差數(shù)列{an}的前n項(xiàng)和Sn=4n2+3n,則an=
 
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:易得n≥2時(shí),an=8n-1,以驗(yàn)證當(dāng)n=1時(shí),a1=7,也滿足上式,綜合可得an
解答: 解:當(dāng)n≥2時(shí),an=Sn-Sn-1
=4n2+3n-4(n-1)2-3(n-1)=8n-1;
當(dāng)n=1時(shí),a1=Sn=4×12+3×1=7,也滿足上式.
∴an=8n-1
故答案為:8n-1
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式,涉及前n項(xiàng)和公式和分類討論的思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,數(shù)列{an}是首項(xiàng)與公比均為a的等比數(shù)列,數(shù)列{bn}滿足bn=an•lgan
(1)若a=3,求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若對(duì)于n∈N*,總有bn<bn+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:cos
π
7
cos
7
cos
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosφ=
3
5
,φ∈(0,
π
2
),求sin(φ-
π
6
),tan(φ+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,n),
b
=(n,1),其中n≠±1,則下列結(jié)論中正確的是(  )
A、(
a
-
b
)∥(
a
+
b
B、(
a
+
b
b
C、(
a
-
b
⊥(
a
+
b
)
D、(
a
+
b
)⊥
b
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+1)=f(x)+1,當(dāng)x∈[0,1]時(shí),f(x)=|3x-1|-1,若對(duì)任意實(shí)數(shù)x,都有f(x+a)<f(x)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-6x+5<0},B={x|1<2x-2<16},C={x|y=ln(a-x)},全集為實(shí)數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C=∅,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a1=20,an=54,Sn=888,求n與d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間中有四點(diǎn)A,B,C,D,其中
AB
=(2m,m,2),
CD
=(m,m+1,-5),且
AB
+
CD
=(5,
13
3
,-3),則直線AB和CD( 。
A、平行B、異面
C、必定相交D、必定垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案