已知向量
a
=(1,n),
b
=(n,1),其中n≠±1,則下列結(jié)論中正確的是( 。
A、(
a
-
b
)∥(
a
+
b
B、(
a
+
b
b
C、(
a
-
b
⊥(
a
+
b
)
D、(
a
+
b
)⊥
b
b
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)兩個(gè)向量平行或垂直的坐標(biāo)表示,對(duì)選項(xiàng)中的平行或垂直進(jìn)行判斷即可.
解答: 解:∵向量
a
=(1,n),
b
=(n,1),其中n≠±1,
a
-
b
=(1-n,n-1),
a
+
b
=(1+n,n+1);
∴(1-n)(n+1)-(n-1)(1+n)=2-2n2≠0,
∴(
a
-
b
)∥(
a
+
b
)不成立,A錯(cuò)誤;
又∵(1+n)×1-(n+1)n=1-n2≠0,
∴(
a
+
b
)∥
b
不成立,B錯(cuò)誤;
又∵(1-n)(1+n)+(n-1)(n+1)=0,
∴(
a
-
b
)⊥(
a
+
b
)成立,C正確;
又∵(1+n)n+(n+1)•1=n2+2n+1≠0,
∴(
a
+
b
)⊥
b
不成立,D錯(cuò)誤.
故選:C.
點(diǎn)評(píng):本題考查了根據(jù)平面向量的坐標(biāo)表示判斷兩個(gè)向量平行與垂直的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,
3
),C(3,0),動(dòng)點(diǎn)D滿足|
CD
|=1,則|
OA
+
OB
+
OD
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(3π-α)=
2
cos(
2
+β),cos(π-α)=
6
3
cos(π+β),且0<α<π,0<β<π,求sinα和cosβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)點(diǎn)p(4,
7
4
)的拋物線y=
1
4
x2的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足:z•
.
z
+2iz=8+6i,求復(fù)數(shù)z的實(shí)部與虛部的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn=4n2+3n,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,使得對(duì)任意x∈R,有f(x+T)=Tf(x)成立.
(1)函數(shù)f(x)=x是否屬于M?說(shuō)明理由.
(2)證明函數(shù)f(x)=sinπx∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
4
<θ<
π
3
,則下列不等式成立的是(  )
A、sinθ>cosθ>tanθ
B、cosθ>tanθ>sinθ
C、sinθ>tanθ>cosθ
D、tanθ>sinθ>cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x(x-1)(x-2)…(x-2015),則f′(2015)=( 。
A、-2013!
B、-2015!
C、2013!
D、2015!

查看答案和解析>>

同步練習(xí)冊(cè)答案