設(shè)焦點(diǎn)在y軸上的雙曲線漸近線方程為y=±
3
3
x,求此雙曲線的離心率.
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:可設(shè)焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程為
y2
a2
-
x2
b2
=1(a>0,b>0),依題意可得
a
b
=
3
3
,利用離心率的概念及計(jì)算公式即可求得答案.
解答: 解:設(shè)焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程為
y2
a2
-
x2
b2
=1(a>0,b>0),
因?yàn)樵撾p曲線漸近線方程為y=±
3
3
x,
所以
a
b
=
3
3
,即
a2
b2
=
1
3
,整理得:b2=3a2,
所以,e2=
c2
a2
=
a2+b2
a2
=
4a2
a2
=4,
所以此雙曲線的離心率為:2.
點(diǎn)評(píng):本題考查雙曲線的幾何性質(zhì),求得b2=3a2是關(guān)鍵,考查離心率的求法,是基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下4組函數(shù)中,表示同一函數(shù)的是(  )
A、f(x)=
x2
,g(x)=(
x
2
B、f(x)=|x|,g(x)=
x2
C、f(x)=
x2-1
x-1
,g(x)=x+1
D、f(x)=
x+1
x-1
,g(x)=
x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知3sinα+cosα=0,求下列各式的值.
(1)
3cosα+5sinα
sinα-cosα
;
(2)sin2α+2sinαcosα+cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
(1)f(x)=sin(2x+
π
3
)的圖象關(guān)于直線x=
π
12
對(duì)稱;
(2)函數(shù)f(x)=4cos(2x+
π
3
)的圖象關(guān)于點(diǎn)(-
5
12
π,0)對(duì)稱;
(3)函數(shù)f(x)=tan(2x-
π
3
)的圖象的所有對(duì)稱中心為(
2
+
π
6
,0),k∈Z;
(4)如函數(shù)f(x)=4cos(2x+
π
3
),則由f (x1)=f (x2)=0可得x1-x2必是π的整數(shù)倍;
(5)函數(shù)f(x)=sin(ωx+φ)為奇函數(shù)的充要條件是φ=kπ+
π
2
,k∈Z.
其中正確的命題的序號(hào)是
 
.(注:把你認(rèn)為正確的命題的序號(hào)都填上.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知三定點(diǎn)A(2,1),B(0,-1),C(-2,1)和兩點(diǎn)D,E滿足
AD
=t
AB
,
BE
=t
BC
,t∈[0,1]

(1)求直線DE的斜率k的取值范圍和傾斜角α的取值范圍;
(2)求線段DE的長(zhǎng)度的最小值,并求出此時(shí)直線DE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Acos(ωx+φ)在一個(gè)周期內(nèi)的圖象如下,此函數(shù)的解析式為( 。
A、y=2cos(2x+
π
6
B、y=2cos(2x-
π
6
C、y=2cos(
x
2
-
π
3
D、y=2cos(2x+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)log5100-log54+(lg3+lg
1
3
2;
(2)7
33
-3
324
-6
3
1
9
+
43
33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)數(shù)函數(shù)y=logax(a>0且a≠1)和指數(shù)函數(shù)y=ax(a>0且a≠1)互為反函數(shù),已知函數(shù)g(x)=log 
1
2
x,其反函數(shù)為y=f(x).
(1)若函數(shù)g(kx2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)k的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=[f(x)]2-2tf(x)+3的最小值φ(t);
(3)定義在I上的函數(shù)F(x),如果滿足,對(duì)任意x∈I,存在常數(shù)M,使得F(x)≤M成立,則稱函數(shù)F(x)是I上的“上限”函數(shù),其中M為函數(shù)F(x)的“上限”,記h(x)=
1-mf(-x)
1+mf(-x)
(m≠0),試問(wèn):函數(shù)h(x)在區(qū)間[0,1]上是否存在“上限”M?若存在,求出M的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角函數(shù)y=sinx定義域?yàn)?div id="nfuqxso" class='quizPutTag' contenteditable='true'> 
;y=cosx的定義域?yàn)?div id="frjitdr" class='quizPutTag' contenteditable='true'> 
;y=tanx的定義域?yàn)?div id="qsnb27e" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案