設數(shù)列{an}是等差數(shù)列,其首項a1=1,公差d<0,{an}的前n項和為Sn,且對任意n∈N*,總存在m∈N*,使得Sn=am,則d=
 
考點:等差數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的通項公式和前n項和公式建立方程關系即可得到結論.
解答: 解:由Sn=am,得n+
n(n-1)
2
d
=1+(m-1)d,
則m=1+
n(n-1)
2
+(
n-1
d
)為正整數(shù),
∵對任意n∈N*,總存在m∈N*
∴當d取-
1
2
時,n=2時,m=0;
當d=-
1
3
時,n=2時,m會取到負值,其它推理下都會取到負值,
∴d只能取-1
即任意n∈N*,
n-1
d
也是整數(shù),只有d=-1滿足條件.
故答案為:-1
點評:本題主要考查等差數(shù)列的性質的應用,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=
x2+2x
x+
1
2
(x≥0)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點間的距離往往不是指兩點間的直線距離(位移),而是實際路程(如圖1).在直角坐標平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標系中如圖2,寫出所有滿足到原點的“直角距離”為2的“格點”的坐標.(格點指橫、縱坐標均為整數(shù)的點)
(2)求到兩定點F1、F2的“直角距離”和為定值2a(a>0)的動點軌跡方程,并在直角坐標系內(nèi)作出該動點的軌跡
①F1(-1,0),F(xiàn)2(1,0),a=2
②F1(-1,-1),F(xiàn)2(1,1),a=2;
③F1(-1,-1),F(xiàn)2(1,1),a=4.
(3)寫出同時滿足以下兩個條件的“格點”的坐標,并說明理由(格點指橫、縱坐標均為整數(shù)的點).
①到A(-1,-1),B(1,1)兩點“直角距離”相等;
②到C(-2,-2),D(2,2)兩點“直角距離”和最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(1+x)m-x
(1)若函數(shù)f(x)為(0,+∞)上的單調函數(shù),求實數(shù)m的取值范圍;
(2)求證:(1+sin1)(1+sin
1
22
)(1+sin
1
32
)…(1+sin
1
n2
)<e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,焦點在x軸上,離心率為
3
2
的橢圓過點(
2
,
2
2
).
(1)求橢圓方程;
(2)設不過原點O的直線l,與該橢圓交于P,Q兩點,直線OP,PQ,OQ的斜率依次為k1、k、k2,滿足k1、k、k2依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域(0,+∞)的單調函數(shù),對任意的x∈(0,+∞),都有f(f(x)-log2x)=3,若x0是方程f(x)-f′(x)=2的一個解,則x0
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,ab=4,當a+4b取得最小值時,
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x1是方程7x+x-4=0的根,x2是方程log7(x-1)+x-5=0的根,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若log2x∈[0,2],則函數(shù)y=(
1
2
)x2-4x+3
的值域為
 

查看答案和解析>>

同步練習冊答案