5.設(shè)Sn為等差數(shù)列{an}的前n項和,已知在Sn中有S17<0,S18>0,那么Sn中最小的是(  )
A.S10B.S9C.S8D.S7

分析 由S16<0,S17>0,利用求和公式及其性質(zhì)可得:a8<0,a9>0,即可得出.

解答 解:∵S16<0,S17>0,
∴$\frac{16({a}_{1}+{a}_{16})}{2}$=8(a8+a9)<0,$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴Sn中最小的是S8
故選:C.

點評 本題考查了等差數(shù)列的通項公式性質(zhì)及其求和公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)0<a≤1,函數(shù)f(x)=x+$\frac{a}{x}$-1,g(x)=x-2lnx,若對任意的x1∈[1,e],存在x2∈[1,e]都有f(x1)≥g(x2)成立,則實數(shù)a的取值范圍是[2-2ln2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.銷售甲、乙兩種商品所得利潤分別是y1,y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m$\sqrt{x+1}$+a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1,C2如圖所示.
(1)求函數(shù)y1與y2的解析式;
(2)若該商場一共投資10萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計算:
(1)8${\;}^{-\frac{1}{3}}}$+(-$\frac{5}{9}$)0-$\sqrt{{{(e-3)}^2}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列{an}的首項a1=1,an+1=an+2n,則a5=(  )
A.$\frac{45}{2}$B.20C.21D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.臺風(fēng)“海馬”以25km/h的速度向正北方向移動,觀測站位于海上的A點,早上9點觀測,臺風(fēng)中心位于其東南方向的B點;早上10點觀測,臺風(fēng)中心位于其南偏東75°方向上的C點,這時觀測站與臺風(fēng)中心的距離AC等于25$\sqrt{2}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,a1=3,且2Sn=an+1+2n.
(1)求a2
(2)求數(shù)列{an}的通項公式an;
(3)令bn=(2n-1)(an-1),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知在四邊形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若cos(75°-a)=$\frac{1}{3}$,則cos(30°+2a)=$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊答案