【題目】已知函數(shù)y=﹣x2+ax﹣ 在區(qū)間[0,1]上的最大值是2,求實數(shù)a的值.
【答案】解:∵y=f(x)=﹣ + (a2﹣a+2),對稱軸為x= ,
(I)當(dāng)0≤ ≤1時,即0≤a≤2時,f(x)max= (a2﹣a+2),
由 (a2﹣a+2)=2得a=﹣2或a=3與0≤a≤2矛盾,不和要求
(II)當(dāng) <0,即a<0時,f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0),由f(0)=2
得﹣ + =2,解得a=﹣6
(III)當(dāng) >1,即a>2時,f(x)在[0,1]上單調(diào)遞增,f(x)max=f(1),
由f(1)=2得:﹣1+a﹣ + =2,解得a=
綜上所述,a=﹣6或a=
【解析】先求對稱軸,比較對稱軸和區(qū)間的關(guān)系,利用開口向下的二次函數(shù)離對稱軸越近函數(shù)值越大來解題.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)在閉區(qū)間上的最值的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)時,當(dāng)時,;當(dāng)時在上遞減,當(dāng)時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)OD⊥AB時,求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, 點是邊的中點,將沿折起,使平面平面,連接得到如圖所示的幾何體.
(1)求證; 平面;
(2)若二面角的平面角的正切值為求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點P在☉O外,PC是☉O的切線,切點為C,直線PO與☉O相交于點A,B.
(1)試探索∠BCP與∠P的數(shù)量關(guān)系;
(2)若∠A=30°,則PB與PA有什么關(guān)系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若函數(shù)有三個不同的極值點,求的值;
(2)若存在實數(shù),使對任意的,不等式恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時,曲線與軸僅有一個交點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】☉O為△ABC的內(nèi)切圓,AB=9,BC=8,CA=10,點D,E分別為AB,AC上的點,且DE為☉O的切線,求△ADE的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點,記 =a , =b.則下列命題中正確的個數(shù)是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+3x+a
(1)當(dāng)a=﹣2時,求不等式f(x)>2的解集
(2)若對任意的x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com