分析 f(x)=(log2x)?x=$\left\{\begin{array}{l}{xlo{g}_{2}x,x≥1}\\{\frac{lo{g}_{2}x}{x},0<x<1}\end{array}\right.$,及其數(shù)列{an}是公比大于0的等比數(shù)列,且a6=1,對公比q分類討論,再利用對數(shù)的運算性質即可得出.
解答 解:∵f(x)=(log2x)?x=$\left\{\begin{array}{l}{xlo{g}_{2}x,x≥1}\\{\frac{lo{g}_{2}x}{x},0<x<1}\end{array}\right.$,
∵數(shù)列{an}是公比大于0的等比數(shù)列,且a6=1,
①1<q時,a1,a2,…,a5∈(0,1),a7,a8,a9,a10∈[1,+∞),${a}_{1}{q}^{5}$=1.
∴${a}_{1}=\frac{1}{{q}^{5}}$,
分別為:$\frac{1}{{q}^{5}}$,$\frac{1}{{q}^{4}}$,…,$\frac{1}{q}$,1,q,…,q4.
∵f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,
∴$\frac{lo{g}_{2}{a}_{1}}{{a}_{1}}$+$\frac{lo{g}_{2}{a}_{2}}{{a}_{2}}$+…+$\frac{lo{g}_{2}{a}_{5}}{{a}_{5}}$+0+a7log2a7+…+a10log2a10=2a1,
∴${q}^{5}lo{g}_{2}\frac{1}{{q}^{5}}$+q4$lo{g}_{2}\frac{1}{{q}^{4}}$+…+$qlo{g}_{2}\frac{1}{q}$+qlog2q+…+${q}^{4}lo{g}_{2}{q}^{4}$=2×$\frac{1}{{q}^{5}}$.
∴${q}^{5}lo{g}_{2}\frac{1}{{q}^{5}}$=2×$\frac{1}{{q}^{5}}$.左邊小于0,右邊大于0,不成立,舍去.
②0<q<1時,${a}_{1}{q}^{5}$=1,∴${a}_{1}=\frac{1}{{q}^{5}}$,
分別為:$\frac{1}{{q}^{5}}$,$\frac{1}{{q}^{4}}$,…,$\frac{1}{q}$,1,q,…,q4,a1,a2,…,a5∈(1,+∞);a7,a8,a9,a10∈(0,1),
∵f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,
∴$\frac{1}{{q}^{5}}lo{g}_{2}\frac{1}{{q}^{5}}$+$\frac{1}{{q}^{4}}$$lo{g}_{2}\frac{1}{{q}^{4}}$+…+$\frac{1}{q}$$lo{g}_{2}\frac{1}{q}$+$\frac{1}{q}$log2q+…+$\frac{1}{{q}^{4}}lo{g}_{2}{q}^{4}$=2×$\frac{1}{{q}^{5}}$.
∴$\frac{1}{{q}^{5}}lo{g}_{2}\frac{1}{{q}^{5}}$=2×$\frac{1}{{q}^{5}}$.
∴$\frac{1}{{q}^{5}}$=4,
∴a1=4.
③q=1時,a1=…=a6=…=a10=1,不滿足f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,舍去.
綜上可得:a1=4.
故答案為:4.
點評 本題考查了等比數(shù)列的通項公式及其性質、對數(shù)的運算性質,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f′(a)<0,f′(b)<0 | B. | f′(a)>0,f′(b)>0 | C. | f′(a)<0,f′(b)>0 | D. | f′(a)>0,f′(b)<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2π}{3}$ | B. | -$\frac{π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com