設(shè)函數(shù)f(x)=ax-,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.

(1)求f(x)的解析式;

(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

 

(1)f(x)=x-

(2)見(jiàn)解析

【解析】【解析】
(1)方程7x-4y-12=0可化為y=x-3,

當(dāng)x=2時(shí),y=

又f′(x)=a+,

于是,解得

故f(x)=x-

(2)證明:設(shè)P(x0,y0)為曲線上任一點(diǎn),由f′(x)=1+知,曲線在點(diǎn)P(x0,y0)處的切線方程為y-y0=(1+)·(x-x0),即y-(x0-)=(1+)(x-x0).

令x=0得,y=-,從而得切線與直線x=0,交點(diǎn)坐標(biāo)為(0,-).

令y=x,得y=x=2x0,從而得切線與直線y=x的交點(diǎn)坐標(biāo)為(2x0,2x0).

所以點(diǎn)P(x0,y0)處的切線與直線x=0,y=x所圍成的三角形面積為|-||2x0|=6.

曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,此定值為6.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:選擇題

若f(x)為奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集為(  )

A.(-2,0)∪(0,2) B.(-∞,-2)∪(0,2)

C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+a2(a,b∈R).

(1)若函數(shù)f(x)在x=1處有極值10,求b的值;

(2)若對(duì)于任意的a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:填空題

已知函數(shù)f(x)=+lnx,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實(shí)數(shù)a的取值范圍為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )

A.(0,1] B.[1,+∞)

C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:填空題

如圖,函數(shù)g(x)=f(x)+x2的圖象在點(diǎn)P處的切線方程是y=-x+8,則f(5)+f′(5)=________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:解答題

某工廠生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分,指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100個(gè)進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試

指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

元件A

8

12

40

32

8

元件B

7

18

40

29

6

(1)試分別估計(jì)元件A,元件B為正品的概率;

(2)生產(chǎn)1個(gè)元件A,若是正品則盈利40元,若是次品則虧損5元;生產(chǎn)1個(gè)元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,

(ⅰ)X為生產(chǎn)1個(gè)元件A和1個(gè)元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(ⅱ)求生產(chǎn)5個(gè)元件B所得利潤(rùn)不少于140元的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的均值為2,則的最小值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:選擇題

連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量a=(m,n)與向量b=(1,0)的夾角記為α,則α∈(0,)的概率為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案