已知函數(shù)f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對于任意的a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.
(1)b=-11 (2)
【解析】【解析】
(1)f′(x)=3x2+2ax+b,
于是,根據(jù)題設(shè)有,
解得或.
當(dāng)時(shí),f′(x)=3x2+8x-11,Δ=64+132>0,所以函數(shù)有極值點(diǎn);
當(dāng)時(shí),f′(x)=3(x-1)2≥0,所以函數(shù)無極值點(diǎn).
所以b=-11.
(2)由題意知f′(x)=3x2+2ax+b≥0對任意的a∈[-4,+∞),x∈[0,2]都成立,
所以F(a)=2xa+3x2+b≥0對任意的a∈[-4,+∞),x∈[0,2]都成立.
因?yàn)閤≥0,
所以F(a)在a∈[-4,+∞)上為單調(diào)遞增函數(shù)或?yàn)槌?shù)函數(shù),
①當(dāng)F(a)為常數(shù)函數(shù)時(shí),F(xiàn)(a)=b≥0;
②當(dāng)F(a)為增函數(shù)時(shí),F(xiàn)(a)min=F(-4)=-8x+3x2+b≥0,
即b≥(-3x2+8x)max對任意x∈[0,2]都成立,
又-3x2+8x=-3(x-)2+≤,
所以當(dāng)x=時(shí),(-3x2+8x)max=,所以b≥.
所以b的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:選擇題
函數(shù)y=()的單調(diào)遞增區(qū)間是( )
A.[-1,] B.(-∞,-1]
C.[2,+∞) D.[,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題
設(shè)函數(shù)f(x)的圖象關(guān)于y軸對稱,又已知f(x)在(0,+∞)上為減函數(shù),且f(1)=0,則不等式<0的解集為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:填空題
f(x)=,f(x)的定義域是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:解答題
某公司為一家制冷設(shè)備廠設(shè)計(jì)生產(chǎn)一種長方形薄板,其周長為4米,這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后,AB′交DC于點(diǎn)P.當(dāng)△ADP的面積最大時(shí)最節(jié)能,凹多邊形ACB′PD的面積最大時(shí)制冷效果最好.
(1)設(shè)AB=x(米),用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計(jì)薄板的長和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計(jì)薄板的長和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:選擇題
設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),將y=f(x)和y=f′(x)的圖象畫在同一個(gè)直角坐標(biāo)系中,不可能正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題
當(dāng)a>0時(shí),函數(shù)f(x)=(x2-2ax)ex的圖象大致是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:解答題
設(shè)函數(shù)f(x)=ax-,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-6幾何概型(解析版) 題型:解答題
在某校趣味運(yùn)動會的頒獎儀式上,為了活躍氣氛,大會組委會決定在頒獎過程中進(jìn)行抽獎活動,用分層抽樣的方法從參加頒獎儀式的高一、高二、高三代表隊(duì)中抽取20人前排就座,其中高二代表隊(duì)有6人.
(1)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)從中隨機(jī)抽取2人上臺抽獎,求a和b至少有一人上臺抽獎的概率;
(2)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個(gè)[0,1]之間的隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎.求該代表中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com