若一個(gè)幾何體的三視圖如圖,則此幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知可得:該幾何體是一個(gè)四棱臺(tái)和一個(gè)圓柱組成的組合體,分別求出兩部分的面積,相加可得答案.
解答: 解:由已知中的三視圖可得:該幾何體是一個(gè)四棱臺(tái)和一個(gè)圓柱組成的組合體,
棱臺(tái)的下底面面積S=80,上底面面積S′=20,高為3,
故棱臺(tái)的體積為:
1
3
(80+20+
80×20
)×3=140,
圓柱的底面直徑為4,則底面半徑為2,底面面積為:4π,高為10,
故圓柱的體積為:4π×10=40π,
故組合體的體積V=140+40π,
故答案為:140+40π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),有下列論斷:
①函數(shù)y=f(x)的表達(dá)式可改寫為y=4cos(2x-
π
6
);
②函數(shù)y=f(x)的最小正周期為2π;
③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱;
④函數(shù)y=f(x)的圖象可由y=4sin2x向左平移
π
3
個(gè)單位得到;
⑤函數(shù)y=f(x)在區(qū)間[-
11π
12
,-
12
)上單調(diào)遞減.
其中正確的是
 
.(將你認(rèn)為正確的論斷的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
OA
|=1,|
OB
|=k,∠AOB=
3
,點(diǎn)C在∠AOB內(nèi),
OC
OA
=0,若
OC
=2m
OA
+m
OB
,|
OC
|=2
3
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=logm(x+1)且m>1,a>b>c>0,則
f(a)
a
f(b)
b
,
f(c)
c
的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=
2
1
(x-
1
x2
)dx,則(x-
a
x
10的展開式中常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}(n∈N*)中,如果存在ak使得“ak<ak-1,且ak<ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個(gè)“谷值”.
①若an=n2-10n+1,則{an}的“谷值”為
 

②若an=
-2n2-tn , n<3
-tn-8, n≥3
且{an}存在“谷值”,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+sinβ=
6
3
,cosα-cosβ=
3
3
,則cos2
α+β
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x>1},N={x|x2≤4},則M∩N=( 。
A、(1,2)
B、[1,2]
C、(1,2]
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2x的一個(gè)單調(diào)遞增區(qū)間可以是(  )
A、[-
π
4
,
π
4
]
B、[-
π
2
,
π
2
]
C、[
π
2
,
4
]
D、[0,π]

查看答案和解析>>

同步練習(xí)冊(cè)答案