已知兩點M(-5,0),N(5,0),給出下列直線方程:①5x-3y=0;②5x-3y-52=0;③x-y-4=0;則在直線上存在點P滿足|MP|=|PN|+6的所有直線方程是     (只填序號).
【答案】分析:由M(-5,0),N(5,0),點P滿足|MP|=|PN|+6,知點P的軌跡是雙曲線:.把①5x-3y=0代入雙曲線方程,得-9y2=400,無解.方程:①5x-3y=0上不存在點P滿足|MP|=|PN|+6;把②5x-3y-52=0代入雙曲線方程,得9x2-520x+2848=0,△>0,直線方程②5x-3y-52=0上存在點P滿足|MP|=|PN|+6.把③x-y-4=0代入雙曲線方程,得7x2+8x-288=0,△>0,直線方程③x-y-4=0上存在點P滿足|MP|=|PN|+6.
解答:解:∵M(-5,0),N(5,0),點P滿足|MP|=|PN|+6,
∴點P的軌跡是以M,N為焦點,實軸長2a=6的雙曲線,
這個雙曲線的方程為:
把①5x-3y=0代入雙曲線方程,得-9y2=400,無解.
∴方程:①5x-3y=0上不存在點P滿足|MP|=|PN|+6;
把②5x-3y-52=0代入雙曲線方程,得=1,
整理,得9x2-520x+2848=0,
∵△=270400-36×2848=167872>0,
∴直線方程②5x-3y-52=0上存在點P滿足|MP|=|PN|+6.
把③x-y-4=0代入雙曲線方程,得,
整理,得7x2+8x-288=0,
∵△=64+28×288=8128>0,
∴直線方程③x-y-4=0上存在點P滿足|MP|=|PN|+6.
故答案為:②③.
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,綜合性強,是高考的重點,易錯點是圓錐曲線的知識體系不牢固.本題具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩點M(-5,0),N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為B型直線,給出下列直線:
①y=x+1
②y=2  
③y=
4
3

④y=2x+1
其中為B型直線的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-5,0),N(5,0),給出下列直線方程:①5x-3y=0;②5x-3y-52=0;③x-y-4=0;則在直線上存在點P滿足|MP|=|PN|+6的所有直線方程是
②③
②③
 (只填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線,其中為“B型直線”的是(    )

①y=x+1;②y=2;③y=x;④y=2x+1.

A.①③              B.①②              C.③④              D.①④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩點M(-5,0),N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為B型直線,給出下列直線:
①y=x+1
②y=2  
③y=
4
3

④y=2x+1
其中為B型直線的是( 。
A.①③B.③④C.①②D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩點M(-5,0),N(5,0),給出下列直線方程:①5x-3y=0;②5x-3y-52=0;③x-y-4=0;則在直線上存在點P滿足|MP|=|PN|+6的所有直線方程是______ (只填序號).

查看答案和解析>>

同步練習冊答案