【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,都有成立,求實數(shù)的最小值.
【答案】(1)函數(shù)的單增區(qū)間為,單減區(qū)間為(2)的最小值為1
【解析】
(1)求導(dǎo)后列表分析函數(shù)單調(diào)性即可.
(2)由(1)可知的最小值為,再根據(jù)恒成立問題的方法分情況分析的最小值即可.
解:(1)由解得,
則及的情況如下:
2 | |||
- | 0 | + | |
極小值 |
所以函數(shù)的單增區(qū)間為,單減區(qū)間為;
(2)法一:
當(dāng)時,.
當(dāng)時,.
若,由(1)可知的最小值為,的最大值為,
所以“對任意,有恒成立”
等價于“”,
即,
解得.
所以的最小值為1.
法二:
當(dāng)時,.
當(dāng)時,.
且由(1)可知,的最小值為,
若,即時,
令,則任取,
有,
所以對成立,
所以必有成立,所以,即.
而當(dāng)時,,,,
所以,即滿足要求,
而當(dāng)時,求出的的值,顯然大于1,
綜上,的最小值為1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王先生購買了一部手機,欲使用中國移動“神州行”卡或加入聯(lián)通的網(wǎng),經(jīng)調(diào)查其收費標(biāo)準見下表:(注:本地電話費以分為計費單位,長途話費以秒為計費單位.)
網(wǎng)絡(luò) | 月租費 | 本地話費 | 長途話費 |
甲:聯(lián)通 | 元 | 元/分 | 元/秒 |
乙:移動“神州行” | 無 | 元/分 | 元/秒 |
若王先生每月?lián)艽虮镜仉娫挼臅r間是撥打長途電話時間的倍,若要用聯(lián)通應(yīng)最少打多長時間的長途電話才合算.( )
A.秒B.秒C.秒D.秒
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(a,);
(1)若,求證:函數(shù)的圖像必過定點;
(2)若,證明:在區(qū)間上的最大值;
(3)存在實數(shù)a,使得當(dāng)時,恒成立,求實數(shù)b的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點到右焦點的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點作傾斜角不為零的直線與橢圓交于兩點,設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且點在函數(shù)的圖像上;
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足:,,求的通項公式;
(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).
(1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);
(2)若從抽得的6個社區(qū)中隨機的抽取2個進行調(diào)查結(jié)果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | ||||||
支持“生二胎” |
(1)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為以歲為分界點對“生育二胎放開”政策的支持度有差異;
年齡不低于歲的人數(shù) | 年齡低于歲的人數(shù) | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點、于原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的估計值分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com