15.已知sinα=$\frac{3}{5}$,α是第二象限角,分別求sin2α、cos2α、tan2α的值.

分析 由已知利用同角三角函數(shù)基本關系式可求cosα,進而利用二倍角公式可求sin2α、cos2α的值,再利用同角三角函數(shù)基本關系式可求tan2α的值.

解答 解:∵sinα=$\frac{3}{5}$,α是第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\sqrt{1-(\frac{3}{5})^{2}}$=-$\frac{4}{5}$,
∴sin2α=2sinαcosα=2×$\frac{3}{5}$×(-$\frac{4}{5}$)=-$\frac{24}{25}$;
cos2α=1-2sin2α=1-2×($\frac{3}{5}$)2=$\frac{7}{25}$;
tan2α=$\frac{sin2α}{cos2α}$=$\frac{-\frac{24}{25}}{\frac{7}{25}}$=-$\frac{24}{7}$.

點評 本題主要考查了同角三角函數(shù)基本關系式,二倍角公式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=x3-3x2+1的減區(qū)間為( 。
A.(2,+∞)B.(-∞,2)C.(0,2)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知變量ξ~N(μ,σ2),那么下面哪個變量服從標準正態(tài)分布?(  )
A.ξB.ξ-μC.$\frac{ξ+μ}{σ}$D.$\frac{ξ-μ}{σ}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖,則函數(shù)表達式為y=sin($\frac{π}{4}$x+$\frac{π}{4}$);若將該函數(shù)向左平移1個單位,再保持縱坐標不變,橫坐標縮短為原來的$\frac{1}{2}$倍得到函數(shù)g(x)=cos$\frac{π}{2}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=sinx-cosx的值域為 ( 。
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=lg(x+4)的定義域是(-4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=4cos2?x-4$\sqrt{3$sin?x•cos?x的最小正周期為π(?>0).
(1)求?的值;
(2)若f(x)的定義域為[-$\frac{π}{3}$,$\frac{π}{6}$],求f(x)的最大值與最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.以正方形的一條邊的兩個端點為焦點,且過另外兩個頂點的橢圓離心率為( 。
A.$\sqrt{2}$-1B.$\sqrt{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知A(1,-2,1),向量$\overrightarrow{a}$=(-3,4,12),若向量$\overrightarrow{AB}$與$\overrightarrow{a}$的方向相同,且|$\overrightarrow{AB}$|=2|$\overrightarrow{a}$|
(1)求點B的坐標;
(2)若點M在直線OA(O為坐標原點)上運動,當$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值時,求點M的坐標.

查看答案和解析>>

同步練習冊答案