直四棱柱的底面是菱形,,其側(cè)面展開圖是邊長(zhǎng)為的正方形.、分別是側(cè)棱、上的動(dòng)點(diǎn),.
(Ⅰ)證明:;
(Ⅱ)在棱上,且,若∥平面,求.
(Ⅰ)見解析 (Ⅱ)2
【解析】本題考查了線線、線面的垂直和平行的定理應(yīng)用,如何實(shí)現(xiàn)線線和線面垂直和平行的轉(zhuǎn)化;求多面體體積時(shí)常用分割法求,注意幾何體的高.
(1)由題意知AC⊥BD,AA1⊥平面ABCD得BD⊥平面AA1C1C,再證BD⊥EF;
(2)由EF∥平面PBD得EF∥PO,再由題意構(gòu)造中位線得QC∥PO,證出EFCQ為平行四邊形再由題意求CF;
解:⑴連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821085776153108/SYS201209182109530100309631_DA.files/image002.png">是菱形,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821085776153108/SYS201209182109530100309631_DA.files/image004.png">是直四棱柱,,,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821085776153108/SYS201209182109530100309631_DA.files/image008.png">, 所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821085776153108/SYS201209182109530100309631_DA.files/image010.png">, 所以 ……6分.
⑵ 連AC交BD與O,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012091821085776153108/SYS201209182109530100309631_DA.files/image012.png">平面,所以EF//PO 取中點(diǎn),則,所以,所以為平行四邊形,
則 ,從而 …12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如右圖所示,已知直四棱柱的底面是菱形,且,,F(xiàn)為的中點(diǎn),M為線段的中點(diǎn)。
(1)求證:直線MF平面ABCD
(2)求證:直線MF平面
(3)求平面與平面ABCD所成二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省張家口市高考預(yù)測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
直四棱柱的底面是菱形,,其側(cè)面展開圖是邊長(zhǎng)為的正方形。、分別是側(cè)棱、上的動(dòng)點(diǎn),.
(I)證明:;
(II)在棱上,且,若平面,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省常州市教育學(xué)會(huì)高三學(xué)生學(xué)業(yè)水平監(jiān)測(cè)數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
如圖,直四棱柱的底面是菱形,,點(diǎn)、分別是上、下底面菱形的對(duì)角線的交點(diǎn).⑴求證:∥平面;⑵求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如右圖所示,已知直四棱柱的底面是菱形,且,為的中點(diǎn),為線段的中點(diǎn)。
(1)求證:直線平面 w.w.w.k.s.5.u.c.o.m
(2)求證:直線平面
(3)求平面與平面所成二面角的大小。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com