已知正項數(shù)列{an}中,其前n項和為Sn,且an=2
Sn
-1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
an+2
2n
,Tn=b1+b2+b3+…+bn,求證:
3
2
≤Tn<5;
(3)設c為實數(shù),對任意滿足成等差數(shù)列的三個不等正整數(shù)m,k,n,不等式Sm+Sn>cSk都成立,求實數(shù)c的取值范圍.
考點:數(shù)列與不等式的綜合,數(shù)列的求和
專題:證明題,綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用Sn與an的關系證明;
(2)利用錯位相減法對數(shù)列{bn}求和,然后進行放縮即可得出結論;
(3)利用等差數(shù)列的性質及不等式的性質放縮證明即可.
解答: 解:(1)由an=2
Sn
-1得
當n=1時,a1=S1,且a1=2
S1
-1,∴a1=1---------1分
當n≥2時,an=Sn-Sn-1,故Sn-Sn-1=2
Sn
-1,得(
Sn
-1)2
=Sn-1
∵數(shù)列{an}是正項數(shù)列,
Sn
-1=
Sn-1
Sn
-
Sn-1
=1
∴{
Sn
}是首項為1,公差為1的等差數(shù)列.----------4分
Sn
=n,Sn=n2
∴an=2
Sn
-1=2n-1.---------------------------5分
(2)∵bn=
an+2
2n
=
2n+1
2n

∴Tn=b1+b2+b3+…+bn=
3
2
+
5
22
+
7
23
+…+
2n-1
2n-1
+
2n+1
2n

∴2Tn=3+
5
2
+
7
22
+…+
2n-1
2n-2
+
2n+1
2n-1

∴兩式相減得Tn=3+
2
2
+
2
22
+…+
2
2n-1
-
2n+1
2n
=3+
1[1-(
1
2
)n-1]
1-
1
2
-
2n+1
2n
=5-
2n+5
2n
------8分
∵n∈N*,∴Tn=5-
2n+5
2n
<5
∵bn=
an+2
2n
>0,∴Tn=b1+b2+b3+…+bn≥b1=
3
2

3
2
≤Tn<5.--------------------------------------------10分
(3)∵不等正整數(shù)m,k,n是等差數(shù)列,
∴m+n=2k,
∴c<
Sm+Sn
Sk
=
m2+n2
k2
------------------------------------11分
m2+n2
k2
=
4(m2+n2)
(m+n)2
2(m2+n2+2mn)
m2+n2+2mn
=2,
∴c≤2
∴實數(shù)c的取值范圍為(-∞,2].-------------------------------14分
點評:本題考查數(shù)列通項公式及求和的方法以及利用數(shù)列與不等式的關系,綜合處理問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人5次測試的成績(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一名運動員參加比賽,你認為選派誰參賽更好?說明理由(不用計算);
(Ⅲ)若從甲、乙兩人的5次成績中各隨機抽取一個,求甲的成績比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x2+2x+3,
(1)求f(0)的值;
(2)若函數(shù)g(x)滿足g(x-1)=
x+1
x2+1
,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲,乙兩班進行數(shù)學考試,按照大于等于80分為優(yōu)秀,80分以下為非優(yōu)秀統(tǒng)計成績后,得列聯(lián)表,已知全部100人中隨機抽取1人為優(yōu)秀的概率為
2
5
  優(yōu)秀 非優(yōu)秀 合計
甲班 15    
乙班   25  
合計     100
本題可以參考獨立性檢驗臨界值表
P( K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005
 k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表中數(shù)據(jù),若按95%的可靠性要求,能否認為“成績優(yōu)秀與班級有關系”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的三個內角A、B、C所對邊的長分別為a,b,c,已知a,b,c成等比數(shù)列,且sinAsinC=
3
4

(Ⅰ)求角B的大小;
(Ⅱ)設
m
=(cosA,cos2A),
n
=(-2,1),當
m
n
取最小值時,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=8x2-6kx+(2k+1)
(1)若f(x)=0的兩根分別為某三角形兩內角的正弦值,求k的取值范圍;
(2)問是否存在實數(shù)k,使得f(x)=0的兩根是直角三角形兩個銳角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學采取分層抽樣的方法從應屆高三學生中按照性別抽取20名學生,其中8名女生中有3名報考理科,男生中有2名報考文科.
(1)是根據(jù)以上信息,寫出2×2列聯(lián)表
(2)用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為該中學的高三學生選報文理科與性別有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
,其中常數(shù)a>0
(1)證明:函數(shù)f(x)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù);
(2)利用(1)的結論,求函數(shù)y=x+
20
x
(x∈[4,6])的值域;
(3)借助(1)的結論,試指出函數(shù)g(x)=
-7x
x2
+x+1(x>0)
的單調區(qū)間,不必證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=2x2-(2m+1)x-m2的定義域為R,且在區(qū)間[-1,+∞)上是單調增函數(shù),則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案