1.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,若$(\overrightarrow a+\overrightarrow{b)}⊥\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

分析 首先利用已知的向量垂直得到兩個(gè)向量的數(shù)量積,然后根據(jù)數(shù)量積公式求夾角.

解答 解:已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,若$(\overrightarrow a+\overrightarrow{b)}⊥\overrightarrow a$,則($\overrightarrow a$+$\overrightarrow b$)$•\overrightarrow{a}$=${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$=0,
所以$\overrightarrow{a}•\overrightarrow$=-1,
∵$\overrightarrow{a}$與$\overrightarrow$夾角的取值范圍為[0,π],
∴$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值為:$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{-1}{2}$,
所以向量夾角為120°;
故選C

點(diǎn)評(píng) 本題考查了平面向量的垂直的性質(zhì)運(yùn)用以及利用數(shù)量積公式求向量的夾角.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z滿足1+i=(1-i)2z,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓ρ=r與圓ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直線的方程為( 。
A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-r
C.$\sqrt{2}$ρ(sin θ+cos θ)=rD.$\sqrt{2}$ρ(sin θ+cos θ)=-r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(2,-3)$若$λ\overrightarrow a-2\overrightarrow b$與$\overrightarrow a$垂直,求λ的值;若$\overrightarrow a-2k\overrightarrow b$與$\overrightarrow a+\overrightarrow b$平行,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.點(diǎn)P是直線kx+y+3=0(k>0)上一動(dòng)點(diǎn),PA,PB是圓C:x2-2x+y2=0的兩條切線,A,B為切點(diǎn).若四邊形PACB的最小面積為2,則實(shí)數(shù)k的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為15m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y∈R,則“xy<1是“0<x<$\frac{1}{y}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知定點(diǎn)A(1,1)、動(dòng)點(diǎn)P在圓x2+y2=1上,點(diǎn)P關(guān)于直線y=x的對(duì)稱點(diǎn)為P′,向量$\overrightarrow{AQ}$=$\overrightarrow{OP′}$,O是坐標(biāo)原點(diǎn),則|$\overrightarrow{PQ}$|的取值范圍是[$\sqrt{2}$,$\sqrt{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,其右焦點(diǎn)為F(1,0).
(1)求橢圓E的方程;
(2)若P、Q、M、N四點(diǎn)都在橢圓E上,已知$\overrightarrow{PF}$與$\overrightarrow{FQ}$共線,$\overrightarrow{MF}$與$\overrightarrow{FN}$共線,且$\overrightarrow{PF}•\overrightarrow{MF}$=0,求四邊形PMQN的面積的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案