(2011•黃岡模擬)設(shè)a>0,b>0,h=min{a,
b
a2+b2
},其中min{x,y}表示x,y兩數(shù)中最小的一個(gè)數(shù),則h的最大值為
2
2
2
2
分析:先根據(jù)符號(hào):min{x,y}的含義理解函數(shù)h的意義,變成關(guān)于h的不等關(guān)系
h≤a
h≤
b
a2+b2
,再結(jié)合基本不等式即可得h的最大值.
解答:解:由題意得:
h≤a
h≤
b
a2+b2
,
h2≤ 
ab
a2+b2
 ≤
ab
2ab
=
1
2

h≤
2
2
,當(dāng)且僅當(dāng)a=b時(shí)到等號(hào),
則h的最大值為
2
2

故答案為:
2
2
點(diǎn)評(píng):本小題主要考查基本不等式、函數(shù)的最值、不等關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
an+1)(n∈N*)
在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)在△ABC所在的平面內(nèi)有一點(diǎn)P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面積與△ABC的面積之比是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦••B•曼德爾布羅特(Benoit B.Mandelbrot) 在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.下圖按照的分形規(guī)律生長成一個(gè)樹形圖,則第10行的空心圓點(diǎn)的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案