A. | ${(-\frac{1}{2})^n}$ | B. | $-\frac{1}{2^n}$ | C. | $-{(-\frac{1}{2})^n}$ | D. | $-{(\frac{1}{2})^{n-1}}$ |
分析 ${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,n≥2時(shí),an=Sn-Sn-1,化為:an=-$\frac{1}{2}{a}_{n-1}$.n=1時(shí),a1=S1=$\frac{1}{3}({a}_{1}-1)$,解得a1.利用等比數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,
∴n≥2時(shí),an=Sn-Sn-1=$\frac{1}{3}({a}_{n}-1)$-$\frac{1}{3}({a}_{n-1}-1)$,化為:an=-$\frac{1}{2}{a}_{n-1}$.
n=1時(shí),a1=S1=$\frac{1}{3}({a}_{1}-1)$,解得a1=$-\frac{1}{2}$.
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)與公比都為-$\frac{1}{2}$.
則an=$(-\frac{1}{2})^{n}$.
故選:A.
點(diǎn)評(píng) 本題考查了等比數(shù)列的定義通項(xiàng)公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $36\sqrt{3}$ | B. | $\frac{98}{3}$ | C. | $\frac{116}{3}$ | D. | $\frac{128}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com