分析 令f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a),從而可得0<a<1,從而可得$\left\{\begin{array}{l}{\frac{3\sqrt{2}}{4}•\frac{1}{3}-a>0}\\{\frac{1}{2}≤lo{g}_{a}(\frac{3\sqrt{2}}{4}•\frac{\sqrt{2}}{2}-a)}\end{array}\right.$,從而解得.
解答 解:令f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a),
∵A∩B=A,
∴($\frac{\sqrt{2}}{4}$-a,$\frac{3}{4}$-a]∈(0,+∞),
∴0<a<1,
∴f(x)=x2-loga($\frac{3\sqrt{2}}{4}$x-a)在其定義域上為增函數(shù),
$\left\{\begin{array}{l}{\frac{3\sqrt{2}}{4}•\frac{1}{3}-a≥0}\\{\frac{1}{2}≤lo{g}_{a}(\frac{3\sqrt{2}}{4}•\frac{\sqrt{2}}{2}-a)}\end{array}\right.$,
解得,$\frac{1}{4}$≤a≤$\frac{\sqrt{2}}{4}$,
故答案為:[$\frac{1}{4}$,$\frac{\sqrt{2}}{4}$].
點評 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用及不等式的解法與應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{3}$,3) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{8π}{3}$,0) | D. | ($\frac{20π}{3}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果不買彩票,那么就不能中獎,因為你買了彩票,所以你一定中獎 | |
B. | 因為正方形的對角線互相平分且相等,所以對角線互相平分且相等的四邊形是正方形 | |
C. | 因為a>b,a<c,所以a-b<a-c | |
D. | 因為a>b,c>d,所以a-d>b-c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com