【題目】橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,焦距為2.一雙曲線和該橢圓有公共焦點(diǎn),且雙曲線的實(shí)半軸長(zhǎng)比橢圓的長(zhǎng)半軸長(zhǎng)小4,雙曲線離心率與橢圓離心率之比為7∶3,求橢圓和雙曲線的方程.
【答案】見(jiàn)解析
【解析】
首先根據(jù)焦點(diǎn)分別在x軸、y軸上進(jìn)行分類,不妨先設(shè)焦點(diǎn)在x軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程,然后根據(jù)題意與橢圓、雙曲線的性質(zhì)列方程組,再解方程組得焦點(diǎn)在x軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程,最后把焦點(diǎn)在y軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程補(bǔ)充上即可.
解:①焦點(diǎn)在x軸上,設(shè)橢圓方程為+=1(a>b>0),且c=.
設(shè)雙曲線為-=1(m>0,n>0),則m=a-4.
因?yàn)?/span>=,所以=,解得a=7,m=3.
因?yàn)闄E圓和雙曲線的半焦距為,
所以b2=36,n2=4.
所以橢圓方程為+=1,雙曲線方程為-=1.
②焦點(diǎn)在y軸上,橢圓方程為+=1,雙曲線方程為-=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)坐標(biāo)原點(diǎn)的直線l與圓C:x2+y2﹣8x+12=0相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)P的軌跡M的方程.
(2)是否存在實(shí)數(shù)k,使得直線l1:y=k(x﹣5)與曲線M有且僅有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E﹣BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若對(duì)定義域內(nèi)的任意,都有成立,求實(shí)數(shù)的值;
(2)若函數(shù)的定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,證明對(duì)任意的正整數(shù), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)時(shí),若的解集為 ,且 中有且僅有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點(diǎn),直線與(為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:
如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,則節(jié)目單上不同的排序方式有( 。┓N
A. 192 B. 144 C. 96 D. 72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在函數(shù)的圖象上,以為切點(diǎn)的切線的傾斜角為.
(Ⅰ)求,的值;
(Ⅱ)是否存在最小的正整數(shù),使得不等式對(duì)于恒成立?如果存在,請(qǐng)求出最小的正整數(shù);如果不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求證:(,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com