【題目】已知:在函數(shù)的圖象上,以為切點的切線的傾斜角為

的值;

是否存在最小的正整數(shù),使得不等式對于恒成立?如果存在,請求出最小的正整數(shù);如果不存在,請說明理由;

求證:,).

【答案】.

存在最小的正整數(shù)使得不等式對于恒成立.

, .

【解析】

試題分析: ,依題意,得,,.

2分

. 3分

,得. 4分

時,;

時,;

時,.

,,,.

因此,當時,. 7分

要使得不等式對于恒成立,則.

所以,存在最小的正整數(shù),使得不等式對于

恒成立. 9分

方法

. 11分

, .

. 13分

綜上可得,,/span>. 14分

方法二:由()知,函數(shù) [-1]上是增函數(shù);在[,]上是減函數(shù);在[,1]上是增函數(shù).

,.

所以,當x[-1,1]時,,即.

[-1,1], ,.

. 11分

, ,且函數(shù)上是增函數(shù).

. 13分

綜上可得,, . 14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】莫言是中國首位獲得諾貝爾文學獎的文學家,國人歡欣鼓舞。某高校文學社從男女生中各抽取50名同學調(diào)查對莫言作品的了程度,結(jié)果如下:

閱讀過莫言的作品數(shù)(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10


(1)試估計該學校學生閱讀莫言作品超過50篇的概率.

(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認為“對莫言作品的非常了解”與性別有關(guān)?

非常了解

一般了解

合計

男生

女生

合計

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在原點,焦點在坐標軸上,焦距為2.一雙曲線和該橢圓有公共焦點,且雙曲線的實半軸長比橢圓的長半軸長小4,雙曲線離心率與橢圓離心率之比為73,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的六面體中,面是邊長為2的正方形,面是直角梯形,,.

(1)求證:平面

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)存在極值,且這些極值的和不小于,的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)討論的單調(diào)性;

2)寫出的極值點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年高考前夕某地天空出現(xiàn)了一朵點贊云,為了將這朵祥云送給馬上升高三的各位學子,現(xiàn)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線 的極坐標方程為,在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標方程:

(2)點為曲線上任意一點,點為曲線上任意一點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

(Ⅰ)求

(Ⅱ)求單調(diào)區(qū)間;

(Ⅲ)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案