18.在△ABC中,a=$\sqrt{3}$,b=3,sinC=2sinA,則cosA=$\frac{{\sqrt{3}}}{2}$.

分析 sinC=2sinA,利用正弦定理可得c=2a=2$\sqrt{3}$,再利用余弦定理即可得出.

解答 解:在△ABC中,∵sinC=2sinA,∴c=2a=2$\sqrt{3}$
則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{3}^{2}+(2\sqrt{3})^{2}-(\sqrt{3})^{2}}{2×3×2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,在定義域內(nèi)是減函數(shù)的是( 。
A.f(x)=xB.f(x)=$\sqrt{x}$C.f(x)=$\frac{1}{{2}^{x}}$D.f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如果sin(π-A)=$\frac{1}{2}$,那么cos($\frac{π}{2}$-A)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過(guò)這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng),通過(guò)這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù))10111213
通過(guò)公路l的頻數(shù)20402020
通過(guò)公路2的頻數(shù)10404010
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過(guò)公路l、公路2的“一次性費(fèi)用”分別為3.2萬(wàn)元、1.6萬(wàn)元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬(wàn)元,若在約定日期前送到;每提前一天銷售商將多支付給生產(chǎn)商2萬(wàn)元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷售商2萬(wàn)元.如果汽車A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤(rùn)更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率e=$\frac{{\sqrt{2}}}{2}$,準(zhǔn)線方程為x=2$\sqrt{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2
(1)求橢圓C的方程
(2)已知點(diǎn)P(${\sqrt{2}$,1)點(diǎn)M在線段PF2上,且MF1+MF2=3,F(xiàn)1M延長(zhǎng)線交橢圓于點(diǎn)Q,求$\frac{{{S_{△MP{F_1}}}}}{{{S_{△MQ{F_2}}}}}$;
?(3)點(diǎn)A、B為橢圓C上動(dòng)點(diǎn),PA、PB斜率分別為k1,k2,當(dāng)k1k2=-$\frac{1}{2}$時(shí),求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,平面上有四個(gè)點(diǎn)A、B、P、Q,其中A、B為定點(diǎn),且AB=$\sqrt{3}$,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1,又△APB和△PQB的面積分別為S和T,則S2+T2的最大值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示正方形O'A'B'C'的邊長(zhǎng)為2cm,它是一個(gè)水平放置的一個(gè)平面圖形的直觀圖,則原圖形的面積是4$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知A={x|x2+3x-10≤0},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a,b是兩條不同的直線,α、β是兩個(gè)不同的平面,下列說(shuō)法中正確的是(  )
A.若a∥b,a∥α,則b∥αB.若a⊥b,a⊥α,b⊥β,則α⊥β
C.若α⊥β,a⊥β,則a∥αD.若α⊥β,a∥α,則a⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案