16.把下列角化成α+2kπ(0≤α<2π,k∈Z)的形式,寫出終邊相同的角的集合,并指出它是第幾象限角.
(1)-$\frac{46π}{3}$;
(2)-1395°;
(3)-20.

分析 利用與α終邊相同的角的集合的結(jié)論,即可求得結(jié)論.

解答 解:(1)∵$\frac{46π}{3}$=-8×2π+$\frac{2π}{3}$,$\frac{2π}{3}$是第二象限的角,
∴與-$\frac{46π}{3}$終邊相同的角的集合為{a|a=2kπ+$\frac{2π}{3}$,k∈Z},
∴-$\frac{46π}{3}$是第二象限的角;
(2)-1395°=-1440°+45°=-4×2π+$\frac{π}{4}$,$\frac{π}{4}$是第一象限的角,
∴-1395°終邊相同的角的集合為{a|a=2kπ+$\frac{π}{4}$,k∈Z},
∴-1395°是第一象限角;
(3)-20=-4×2π+(8π-20),而$\frac{3}{2}$π<8π-20<2π,8π-20是第四象限角,
∴與-20終邊相同的角的集合為{a|a=2kπ+(8π-20),k∈Z},
∴-20是第四象限角.

點評 本題考查終邊相同的角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(a,b)=$\sqrt{{3}^{2}+(5-a)^{2}}$+$\sqrt{(5-2b)^{2}+(5-b)^{2}}$+$\sqrt{4(b-1)^{2}+(b-a)^{2}}$,其中a,b∈R,則f(a,b)的最小值是4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在矩形ABCD中,點M在線段BC上,點N在線段CD上.且AB=4.AD=2,MN=$\sqrt{5}$,則$\overrightarrow{AM}$$•\overrightarrow{AN}$的最小值是( 。
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知角θ的終邊上有一點P(12m,5m)其中m≠0,求角θ的正弦值、余弦值和正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.己知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),內(nèi)接于橢圓的正方形面積為S1,內(nèi)接于橢圓且有最大面積的矩形的面積為S2,則$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2ab}{{a}^{2}+^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若橢圓的焦點在y軸上,長軸長為4,離心率e=$\frac{\sqrt{3}}{2}$,則其標(biāo)準(zhǔn)方程為${x}^{2}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.任取x∈[-$\frac{π}{6}$,$\frac{π}{2}$],則使sinx+cosx∈[1,$\sqrt{2}$]的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|(x-a)[x-(a2+1)]>0},B={y|y=$\frac{1}{2}{x}^{2}$-x+$\frac{5}{2}$,0≤x≤3}.
(1)若A∩B=∅,求a的取值范圍;
(2)當(dāng)a取使得不等式x2+1≥ax恒成立的a的最小值時,求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和為Sn,a1=3,Sn=3an+1,則Sn=$3•(\frac{4}{3})^{n-1}$.

查看答案和解析>>

同步練習(xí)冊答案