6.已知f(a,b)=$\sqrt{{3}^{2}+(5-a)^{2}}$+$\sqrt{(5-2b)^{2}+(5-b)^{2}}$+$\sqrt{4(b-1)^{2}+(b-a)^{2}}$,其中a,b∈R,則f(a,b)的最小值是4$\sqrt{5}$.

分析 f(a,b)表示A(-1,5),B(2,a)的距離與C(5,5)與D(2b,b)的距離與BD的距離的和,設C關于直線y=$\frac{1}{2}$x的對稱點為E(m,n),則f(a,b)≥|AE|,解的答案.

解答 解:f(a,b)=$\sqrt{{3}^{2}+(5-a)^{2}}$+$\sqrt{(5-2b)^{2}+(5-b)^{2}}$+$\sqrt{4(b-1)^{2}+(b-a)^{2}}$表示:
A(-1,5),B(2,a)的距離與C(5,5)與D(2b,b)的距離與BD的距離的和,
所以f(a,b)=|AB|+|CD|+|BD|,
如圖所示:

B在直線x=2上,D在直線y=$\frac{1}{2}$x上,
設C關于直線y=$\frac{1}{2}$x的對稱點為E(m,n),
則$\left\{\begin{array}{l}\frac{n-5}{m-5}=-2\\ \frac{n+5}{2}=\frac{m+5}{4}\end{array}\right.$
解得:$\left\{\begin{array}{l}m=7\\ n=1\end{array}\right.$,
∴f(a,b)≥|AE|=4$\sqrt{5}$,當且僅當a=$\frac{7}{2}$,b=$\frac{9}{4}$時取最小值4$\sqrt{5}$,
故答案為:4$\sqrt{5}$.

點評 本題考查的知識點是兩點之間的距離,正確理解f(a,b)表示的幾何意義,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.某超市銷售某種小商品的經(jīng)驗表明,該商品每日的銷售量y(單位:件)與銷售價格x(單位:元/件)滿足關系式y(tǒng)=$\frac{160x+a}{x-1}+10{x^2}$-80x,其中1<x<4,a為常數(shù),已知銷售價格為3元/件時,每日可售出該商品11件.若該商品的進價為1元/件,當銷售價格x為何值時,超市每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)$f(x)=\frac{{\sqrt{9-{x^2}}}}{ln(x-1)}$的定義域為(1,2)∪(2,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知x是實數(shù),[x]表示不超過x的最大整數(shù).若an=[log2n].Sn為數(shù)列{an}的前n項和,求${S}_{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在非等腰△ABC中,A,B,C的對邊分別是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面積為6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若曲線f(x)=ax3+bx2+cx在x=0處的切線是y=x,且函數(shù)y=f(x)在x=1處取得極小值0,則曲線f(x)的極大值為$\frac{4}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$則不等式xf(x+1)<x2-2的解集為( 。
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=x2-4x+3在[0,a]的值域是[-1,3].實數(shù)a的取值范圍記為集合A,g(x)=cos2x+$\frac{a}{2}$sinx.記g(x)的最大值為g(a).若g(a)≥b,對任意實數(shù)a∈A恒成立,則實數(shù)b的取值范圍是b≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.把下列角化成α+2kπ(0≤α<2π,k∈Z)的形式,寫出終邊相同的角的集合,并指出它是第幾象限角.
(1)-$\frac{46π}{3}$;
(2)-1395°;
(3)-20.

查看答案和解析>>

同步練習冊答案