【題目】某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)

1)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表;

2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān),并寫(xiě)出簡(jiǎn)要分析.

主食蔬菜

主食肉類

合計(jì)

50歲以下

50歲以上

合計(jì)

參考公式:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

【答案】1)見(jiàn)解析 2)能,理由見(jiàn)解析

【解析】

1)完善列聯(lián)表得到答案.

2)計(jì)算得到,比較數(shù)據(jù)得到答案.

1

主食蔬菜

主食肉類

合計(jì)

50歲以下

4

8

12

50歲以上

16

2

18

合計(jì)

20

10

30

2,有99%的把握認(rèn)為親屬的飲食習(xí)慣與年齡有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),直線l過(guò)點(diǎn)P(1,1),且傾斜角α.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sin θ.

(1)求圓C的直角坐標(biāo)方程;

(2)設(shè)直線l與圓C交于A,B兩點(diǎn),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)設(shè)P0-1),直線lC的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,數(shù)列為等比數(shù)列,且,,.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)數(shù)列是由所有的項(xiàng),且的項(xiàng)組成的數(shù)列,且原項(xiàng)數(shù)先后順序保持不變,求數(shù)列的前2019項(xiàng)的和;

(3)對(duì)任意給定的是否存在使成等差數(shù)列?若存在,用分別表示(只要寫(xiě)出一組即可);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①命題,則的否命題為,則;②的必要不充分條件;③命題,使得的否定是:“,均有;④命題,則的逆命題為真命題.其中所有正確命題的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線為參數(shù))與曲線相交于點(diǎn),兩點(diǎn).

(1)求曲線的平面直角坐標(biāo)系方程和直線的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為(x-12+y-12=9P2,2)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為ACBD,則四邊形ABCD的面積是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),其中.

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若存在,對(duì)任意的實(shí)數(shù),恒有成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案