【題目】“歐幾里得算法”是有記載的最古老的算法,可追溯至公元前300年前,如圖的程序框圖的算法思路就是來源于“歐幾里得算法”.執(zhí)行改程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為675,125,則輸出的a=(
A.0
B.25
C.50
D.75

【答案】C
【解析】解:輸入a=675,b=125,c=50,

a=125,b=50,c=25,

a=50,b=25,c=0,

輸出a=50,

故選:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機(jī)抽取這種芯片共120件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某城鎮(zhèn)由6條東西方向的街道和7條南北方向的街道組成,其中有一個(gè)池塘,街道在此變成一個(gè)菱形的環(huán)池大道.現(xiàn)要從城鎮(zhèn)的A處走到B處,使所走的路程最短,最多可以有種不同的走法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對(duì)于任意x≥0,f(x)≥ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 過點(diǎn)M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是(
A.
B. ,
C.
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 則下列四個(gè)命題中,錯(cuò)誤的是(
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{ }的公差為 的等差數(shù)列
B.若數(shù)列{ }是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成公差相等的等差數(shù)列,則{an}是等差數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案