15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

分析 利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào)求得sinα及cosα的值.

解答 解:∵已知tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,sin2α+cos2α=1,∴α為第一象限角或α為第三象限角,
當(dāng)α為第一象限角時(shí),sinα=$\frac{4}{5}$ 及cosα=$\frac{3}{5}$;
當(dāng)α為第三象限角時(shí),sinα=-$\frac{4}{5}$ 及cosα=-$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1中,點(diǎn)H是棱B1C1中點(diǎn),則四邊形BDD1H是( 。
A.平行四邊形B.矩形C.空間四邊形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.定義在R上的函數(shù)f(x),g(x),其中f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=a2x3+x2+a3(a≠0)
(1)求f(x)和g(x)的解析式;
(2)命題P:對(duì)任意x∈[1,2],都有f(x)≥1,命題Q:存在x∈[-2,3],使g(x)≥17,若P∨Q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:(lg5)2+lg2•lg50-log89•log2732=-$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,點(diǎn)P(2,1)為拋物線C:y=$\frac{{x}^{2}}{4}$上的定點(diǎn),A,B為拋物線C上兩個(gè)動(dòng)點(diǎn).
(1)若直線PA與PB的傾斜角互補(bǔ),證明:直線AB的斜率為定值;
(2)若PA⊥PB,直線AB是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn),若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)設(shè)F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求實(shí)數(shù)a的值;
(2)若x≥1時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)n≥2時(shí)且n∈N*時(shí),求證:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.兩條直線mx+y-n=0與x+my+1=0平行的充要條件是( 。
A.m=1且n≠1B.m=-1且n≠1
C.m=±1D.$\left\{\begin{array}{l}m=1\\ n≠-1\end{array}\right.$或$\left\{\begin{array}{l}m=-1\\ n≠1\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=2x-3x+4的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案