8.如圖是函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象,則f(3x0)=-$\frac{\sqrt{3}}{2}$

分析 由特殊點(diǎn)的坐標(biāo)求出φ的值,再利用余弦函數(shù)的圖象特征求得x0的值,可得要求式子的值.

解答 解:根據(jù)函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象,可得cosφ=$\frac{\sqrt{3}}{2}$,∴φ=$\frac{π}{6}$,
∴f(x)=cos(πx+$\frac{π}{6}$).
再根據(jù)πx0+$\frac{π}{6}$=$\frac{11π}{6}$,可得x0=$\frac{5π}{3}$,∴f(3x0)=cos(5π+$\frac{π}{6}$)=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由特殊點(diǎn)的坐標(biāo)求出φ的值,余弦函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|-2≤x<2},集合B={x|-1<x<3},那么A∪B=( 。
A.{x|-2≤x<3}B.{-1,0,1}C.{x|-1<x<2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=5-2xC.y=|x|D.y=-2x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷(guǐ)影長的記錄中,冬至和夏至的晷影長是實(shí)測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中$115.1\frac{4}{6}$寸表示115寸$1\frac{4}{6}$分(1寸=10分).
節(jié)
冬至小寒
(大雪)
大寒
(小雪)
立春
(立冬)
雨水
(霜降)
驚蟄
(寒露)
春分
(秋分)
清明
(白露)
谷雨
(處暑)
立夏
(立秋)
小滿
(大暑)
芒種
(小暑)
夏至
晷影

(寸)
135.0$125.\frac{5}{6}$$115.1\frac{4}{6}$$105.2\frac{3}{6}$$95.3\frac{2}{6}$$85.4\frac{2}{6}$75.5$66.5\frac{5}{6}$$55.6\frac{4}{6}$$45.7\frac{3}{6}$$35.8\frac{2}{6}$$25.9\frac{1}{6}$16.0
已知《易經(jīng)》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長應(yīng)為82寸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.我市隨機(jī)抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]
(Ⅰ)求直方圖中x的值
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若全市共有企業(yè)1300個(gè),試估計(jì)全市有多少企業(yè)可以申請政策優(yōu)惠.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥x-1\\ x+y≤4\end{array}\right.$,目標(biāo)函數(shù)z=x+y,則當(dāng)z=3時(shí),x2+y2的取值范圍是( 。
A.$[\frac{{3\sqrt{2}}}{2},\sqrt{5}]$B.$[\frac{{3\sqrt{2}}}{2},5]$C.$[\frac{9}{2},5]$D.$[\sqrt{5},\frac{9}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知O,A,B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測繪點(diǎn),用測繪儀進(jìn)行測繪,O地為一磁場,距離其不超過$\sqrt{3}km$的范圍內(nèi)對測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$1-\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線ax+y+2=0的傾斜角為135°,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,動點(diǎn)P與兩定點(diǎn)A(-2,0),B(2,0)連線的斜率乘積為$-\frac{1}{2}$,記點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若曲線C上的兩點(diǎn)M,N滿足OM∥PA,ON∥PB,求證:△OMN的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案