16.給出下列敘述:
①若關于x的不等式$\frac{ax-1}{x+1}$<0的解集是(-∞,-1)∪(-$\frac{1}{2}$,+∞),則a=-2;
②若x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,則x+y的最小值為16;
③已知a,b,c,d為實數(shù),且c>d,若a>b,則a-c>b-d;
④函數(shù)y=loga(x+3)-1(a>0,且a≠1)的圖象恒過定點A,若點A的坐標滿足方程mx+ny+1=0,其中mn>0,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為4.
其中所有正確敘述的序號是①②.

分析 對4個選項分別進行判斷,即可得出結(jié)論.

解答 解:①由題意,-$\frac{1}{2}$a-1=0,∴a=-2,正確;
②若x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,則x+y=(x+y)($\frac{1}{x}$+$\frac{9}{y}$)=10+$\frac{y}{x}$+$\frac{9x}{y}$≥10+6=16,∴x+y的最小值為16,正確;
③已知a,b,c,d為實數(shù),且c>d,因為同向不等式不能相減,故若a>b,則a-c>b-d,不正確;
④∵x=-2時,y=log21-1=-1,
∴函數(shù)y=log2(x+3)-1(a>0,a≠1)的圖象恒過定點(-2,-1)即A(-2,-1),
∵點A在直線mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0
∴$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=4+$\frac{n}{m}$+$\frac{4m}{n}$≥4+4=8,
∴$\frac{1}{m}$+$\frac{2}{n}$的最小值為8,不正確.
故答案為:①②.

點評 本題考查不等式的解法,考查基本不等式的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x(x+4),x>0}\\{x(x-4),x≤0}\end{array}\right.$,則f(a)的值不可能為( 。
A.2016B.0C.-2D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知f($\frac{2}{x}$+1)=x+1,求函數(shù)f(x)的解析式及值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)y=x2+2mx+m在[0,1]上不單調(diào),則f(m)的最小值為-$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=$\frac{1}{{2}^{x}-1}$的定義域是(-∞,0)∪(0,+∞),值域是(-∞,-1)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.方程組:$\left\{\begin{array}{l}{y=mx+1}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$有解,m的取值范圍是-2≤m≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,三個內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,lgc-lga=-lgsinB=lg$\sqrt{2}$,且∠B為銳角,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.對任意正整數(shù)n,數(shù)列{an}滿足$\sum_{i=1}^{n}$ai=n3,則$\sum_{i=2}^{2009}$$\frac{1}{{a}_{i}-1}$=$\frac{2008}{6027}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R為常數(shù).
(1)當a=1時,試判斷f(x)的單調(diào)性;
(2)若g(x)在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(3)設函數(shù)h(x)=x2-mx+4,當a=2時,若存在x1∈[1,2],?x2∈[1,2],總有g(x1)≥h(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案