【題目】已知直線:(為參數(shù))和圓的極坐標(biāo)方程:.
(1)分別求直線和圓的普通方程并判斷直線與圓的位置關(guān)系;
(2)已知點,若直線與圓相交于,兩點,求的值.
【答案】(1)直線,圓,直線和圓相交(2)
【解析】
(1)消去直線參數(shù)方程中參數(shù),可得直線的普通方程,把兩邊同時乘以,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程,再由圓心到直線的距離與圓的半徑的關(guān)系判斷直線和圓的位置關(guān)系;
(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,化為關(guān)于的一元二次方程,利用參數(shù)的幾何意義及根與系數(shù)的關(guān)系,求的值.
解:(1)由:(為參數(shù)),消去參數(shù)得.
由得,因,,
則圓的普通方程為.
則圓心到直線的距離,故直線和圓相交.
(2)設(shè),,
將直線的參數(shù)方程代入得,
因直線過點,且點在圓內(nèi),
則由的幾何意義知.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年4月的“西安奔馳女車主哭訴維權(quán)事件”引起了社會的廣泛關(guān)注,某汽車4S店為了調(diào)研公司的售后服務(wù)態(tài)度,對5月份到店維修保養(yǎng)的100位客戶進(jìn)行了回訪調(diào)查,每位客戶用10分制對該店的售后服務(wù)進(jìn)行打分.現(xiàn)將打分的情況分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.已知第二組的頻數(shù)為10.
(1)求圖中實數(shù)a,b的值;
(2)求所打分值在[6,10]的客戶人數(shù);
(3)總公司規(guī)定,若4S店的客戶回訪平均得分低于7分,則將勒令其停業(yè)整頓.試用頻率分布直方圖的組中值對總體平均數(shù)進(jìn)行估計,判斷該4S店是否需要停業(yè)整頓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,若直線l與曲線C相交于A,B兩點,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】羽毛球比賽中采用每球得分制,即每回合中勝方得1分,負(fù)方得0分,每回合由上回合的勝方發(fā)球.設(shè)在甲、乙的比賽中,每回合發(fā)球,發(fā)球方得1分的概率為0.6,各回合發(fā)球的勝負(fù)結(jié)果相互獨立.若在一局比賽中,甲先發(fā)球.
(1)求比賽進(jìn)行3個回合后,甲與乙的比分為的概率;
(2)表示3個回合后乙的得分,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是實數(shù),函數(shù).
(1)若,求的值及曲線在點處的切線方程;
(2)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足:對任意都有.
(1)求證:函數(shù)是奇函數(shù);
(2)如果當(dāng)時,有,試判斷在上的單調(diào)性,并用定義證明你的判斷;
(3)在(2)的條件下,若對滿足不等式的任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)同時滿足下列兩個條件,則稱該函數(shù)為“和諧函數(shù)”:
(1)任意恒成立;
(2)任意且,都有
以下四個函數(shù):①;②;③;④中是“和諧函數(shù)”的為________________(寫出所有正確的題號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com