方程2x=
3
2
-x2的解的個數(shù)為
 
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將方程的解的問題轉(zhuǎn)化為函數(shù)的解得問題,畫出圖象一目了然.
解答: 解:令f(x)=2x,g(x)=
3
2
-x2
畫出函數(shù)的圖象,如圖示:

∴f(x),g(x)有2個交點,
故答案為:2.
點評:本題考查了函數(shù)的零點問題,考查了數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={0,1,2,3},B={1,3,4},則A∩B的子集個數(shù)為( 。
A、2B、3C、4D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點O是銳角△ABC的外心,AB=8AC=12,A=
π
3
,若
AO
=x
AB
+y
AC
,則2x+3y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知拋物線y2=4x,點P(a,0)是x軸上的一點,經(jīng)過點P且斜率為1的直線l與拋物線相交于A,B兩點.
(1)當點P在x軸上時,求線段AB的中點軌跡方程;
(2)若|AB|=4|OP|(O為坐標原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
5
+
y2
4
=1的兩焦點為F1,F(xiàn)2,長軸兩頂點為A1,A2
(1)P是橢圓上一點,且∠F1PF2=30°,求△F1PF2的面積;
(2)過橢圓的左焦點作一條傾斜角為45°的直線l與橢圓交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐A-ABCD中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC.
(Ⅰ)證明:AD⊥CE;
(Ⅱ)若設(shè)AC=2,求二面角C-AD-E余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點為F,過F作圓x2+y2=a2的切線,切點為E,延長FE交雙曲線右支于點P,若E為PF的中點,則雙曲線的離心率為(  )
A、
10
2
B、5
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和記為Sn,已知a10=17,a20=37.
(1)求通項an
(2)若sn=15,求n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x,y都有f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,f(1)=1.
(1)判斷f(x)的單調(diào)性;
(2)求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案