【題目】如下圖,三棱柱的各棱長都是2,,分別是的中點(diǎn).

1)證明:平面;

2)求直線與平面所成角的正弦值.

【答案】(1)證明見解析(2)

【解析】

(1)中點(diǎn),連,,證明平面平面,然后可證明平面平面.
(2) 連接、,作.連接,即為所求角,然后歸結(jié)到三角形中求解.

解:(1)取中點(diǎn),連,

的中位線,

,

又∵平面,

平面.

∵在中,,分別是,的中點(diǎn).

.又∵平面,

平面.

又∵,

∴平面平面,

平面,

平面.

2)∵

∴即求直線與平面所成角的正弦值.

連接、,作.連接.

由條件可知,是正三角形,

,

同理,又∵,

平面.

又∵平面.

∴平面平面.

平面,且.

平面.

即為所求角.

由條件知,

.

,∴.

.又∵,

.

∴所求值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項(xiàng);

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項(xiàng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)是底面的中心,是線段的上一點(diǎn)。

(1)若的中點(diǎn),求直線與平面所成角的正弦值;

(2)能否存在點(diǎn)使得平面平面,若能,請(qǐng)指出點(diǎn)的位置關(guān)系,并加以證明;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程為焦點(diǎn),為拋物線準(zhǔn)線上一點(diǎn),為線段與拋物線的交點(diǎn),定義:.

(1)當(dāng)時(shí),求;

(2)證明:存在常數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,平面平面.

1)證明:平面.

2)設(shè)點(diǎn)是線段(不含端點(diǎn))上一動(dòng)點(diǎn),當(dāng)三棱錐的體積為1時(shí),求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案