13.等差數(shù)列{an}中,前n項和為Sn,a1>0,S12•S13<0則n為何值時,Sn最大?

分析 設(shè)數(shù)列的公差為d,由a1>0,S12•S13<0,可得d<0.Sn=$\fracwwtizx6{2}$n2+$({a}_{1}-\fracptneuje{2})$n,利用二次函數(shù)的單調(diào)性可得:12<m<13,拋物線的對稱軸$6<\frac{m}{2}$<6.5,進(jìn)而得出.

解答 解:設(shè)數(shù)列的公差為d,∵a1>0,S12•S13<0,∴d<0.
Sn=na1+$\frac{n(n-1)}{2}$d=$\fracpr9izvk{2}$n2+$({a}_{1}-\frac2zshyun{2})$n,
可得Sn是過原點的關(guān)于n的二次函數(shù),由條件可知開口向下;設(shè)m是拋物線與x軸的另一個交點,則12<m<13,則拋物線的對稱軸$6<\frac{m}{2}$<6.5,
∵n為正整數(shù),∴S6最大.

點評 本題考查了等差數(shù)列的通項公式與求和公式、二次函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC,若存在△A1B1C1,滿足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{cos{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$=1,則稱△A1B1C1是△ABC的一個“友好”三角形.若等腰△ABC存在“友好”三角形,則其頂角的度數(shù)為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下x,f(x)對應(yīng)值表:
x123456
f(x)132.5210.5-7.5611.5-53.76-126.8
函數(shù)f(x)在區(qū)間[1,6]上有零點至少有( 。
A.6個B.5個C.4個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b∈R+,求證$\sqrt{{a^2}+{b^2}}≥\frac{{\sqrt{2}}}{2}(a+b)$(用分析法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且|QF|=$\frac{5}{4}|PQ|$
(1)求C的方程     
(2)過F的直線l與C相交于A,B兩點,計算$\frac{1}{|AF|}+\frac{1}{|BF|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義域為R的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,當(dāng)x∈(1,+∞)時,f′(x)<0;當(dāng)x∈(0,1)時f′(x)>0,且f(2)=0,則關(guān)于x的不等式(x+1)f(x)>0的解集為(-2,-1)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.“低碳經(jīng)濟”是促進(jìn)社會可持續(xù)發(fā)展的推進(jìn)器,某企業(yè)現(xiàn)有100萬元資金可用于投資,如果投資“傳統(tǒng)型”經(jīng)濟項目,一年后可能獲利20%,可能損失10%,也可能不賠不賺,這三種情況發(fā)生的概率分別為$\frac{3}{5}$,$\frac{1}{5}$,$\frac{1}{5}$;如果投資“低碳型”經(jīng)濟項目,一年后可能獲利30%,也可能損失20%,這兩種情況發(fā)生的概率分別為a和b(其中a+b=1).
(1)如果把100萬元投資“傳統(tǒng)型”經(jīng)濟項目,用ξ表示投資收益(投資收益=回收資金-投資資金),求ξ的概率分布及均值(數(shù)學(xué)期望)E(ξ);
(2)如果把100萬元投資“低碳型”經(jīng)濟項目,預(yù)測其投資收益均值會不低于投資“傳統(tǒng)型”經(jīng)濟項目的投資收益均值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=2sin(2x+φ)(-π<φ<0),y=f(x)的圖象的一條對稱軸是直線x=$\frac{π}{8}$.
(1)在答題卡上用“五點法”列表并作出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)用文字說明通過函數(shù)圖象變換,由函數(shù)y=sinx的圖象得到函數(shù)y=f(x)的過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某人騎自行車去A商場購物,行至叉路口B處,本應(yīng)沿左前方道路直接到達(dá)A商場,但他誤沿右前方的道路行駛,已知左右兩條道路夾角為30°.行駛了500m到達(dá)C處后,他左拐彎上了一條可以直接到達(dá)A商場的道路.已知他左拐后行駛的道路與剛才行駛的道路夾角為75°(道路的夾角為銳角),試求他比直接到達(dá)A商場多走了多少m?

查看答案和解析>>

同步練習(xí)冊答案