【題目】已知橢圓長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的兩倍,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4,直線過(guò)點(diǎn),且與橢圓相交于另一點(diǎn).

1)求橢圓的方程;

2)若線段長(zhǎng)為,求直線的傾斜角;

3)點(diǎn)在線段的垂直平分線上,且,求的值.

【答案】1;(2;(3.

【解析】

1)由橢圓長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的兩倍,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4,列出方程組求出,,即可求橢圓的方程;

2)直線的方程代入橢圓方程,利用韋達(dá)定理,結(jié)合弦長(zhǎng)公式,即可求得結(jié)論.

3)設(shè)直線的方程為,由,得,由此根據(jù)兩種情況分類(lèi)討論經(jīng),能求出結(jié)果.

解:(1橢圓長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的兩倍,

連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4,

,

解得

所以橢圓的方程為

2)由(1)可知點(diǎn)的坐標(biāo)是

設(shè)點(diǎn)的坐標(biāo)為,,直線的斜率為,則直線的方程為

代入橢圓方程,消去并整理,得

,得

從而

所以

,得

整理得,即,解得

所以直線的傾斜角

3)由(1)可知.設(shè)點(diǎn)的坐標(biāo)為,,直線的斜率為,

則直線的方程為

于是,兩點(diǎn)的坐標(biāo)滿足方程組,

由方程組消去并整理,得,

,得,從而

設(shè)線段是中點(diǎn)為,則的坐標(biāo)為,

以下分兩種情況:

①當(dāng)時(shí),點(diǎn)的坐標(biāo)為.線段的垂直平分線為軸,于是

,,由,得

②當(dāng)時(shí),線段的垂直平分線方程為,

,解得

,,

整理得,故,解得

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的通項(xiàng)公式;

(3)令(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)隨機(jī)抽取部分高一學(xué)生調(diào)查其每日自主安排學(xué)習(xí)的時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖,其中自主安排學(xué)習(xí)時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,

)求直方圖中的值;

)從學(xué)校全體高一學(xué)生中任選名學(xué)生,這名學(xué)生中自主安排學(xué)習(xí)時(shí)間少于分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Cab>0)的兩個(gè)焦點(diǎn)分別為F1F2,離心率為,過(guò)F1的直線l與橢C交于M,N兩點(diǎn),且MNF2的周長(zhǎng)為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點(diǎn),且OAOB,試問(wèn)點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且0,若過(guò) A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線相切,過(guò)定點(diǎn) M(0,2)的直線與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線的斜率,在x軸上是否存在點(diǎn)P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由;(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與雙曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn).

1)若,求實(shí)數(shù)的值;

2)是否存在實(shí)數(shù),使得兩點(diǎn)關(guān)于對(duì)稱(chēng)?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3個(gè)紅球與3個(gè)黑球隨機(jī)排成一行,從左到右依次在球上標(biāo)記12,34,56,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為正方形,平面,四邊形與四邊形也都為正方形,連接,點(diǎn)的中點(diǎn),有下述四個(gè)結(jié)論:

;    、所成角為;    

平面    、與平面所成角為

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案