【題目】已知四邊形為正方形,平面,四邊形與四邊形也都為正方形,連接,點(diǎn)的中點(diǎn),有下述四個(gè)結(jié)論:

;     ②所成角為;    

平面;    、與平面所成角為

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①②③C.①③④D.①②③④

【答案】B

【解析】

根據(jù)題意建立空間直角坐標(biāo)系,寫出所有點(diǎn)的坐標(biāo),利用向量法可以判斷出正確的結(jié)論.

由題意得,所得幾何體可以看成一個(gè)正方體,

因此所在直線分別為軸,建立空間直角坐標(biāo)系,

設(shè),

,,,,,

,,

,

,

,①是正確的.

,,

設(shè)所成的角為,

,②是正確的.

,,

設(shè)是平面的一個(gè)法向量,

,,

,,

平面,③是正確.

,由圖像易得:是平面的一個(gè)法量,

設(shè)與平面所成的角為,

,

,④不正確,

綜上:①②③正確.

故選:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的兩倍,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4,直線過點(diǎn),且與橢圓相交于另一點(diǎn).

1)求橢圓的方程;

2)若線段長(zhǎng)為,求直線的傾斜角;

3)點(diǎn)在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)ab滿足ab>0ab,由a、b、按一定順序構(gòu)成的數(shù)列( 。

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓臺(tái)中,平面過上下底面的圓心,點(diǎn)M上,N的中點(diǎn),.

1)求證:平面平面

2)當(dāng)時(shí),與底面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):對(duì)任意,均存在反函數(shù),且對(duì)任意,方程均有解;對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.

1)若,均在集合中,求證:函數(shù);

2)若函數(shù))在集合中,求實(shí)數(shù)的取值范圍;

3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個(gè)三棱錐,是圓的直徑,是圓上的點(diǎn),垂直圓所在的平面,分別是棱,的中點(diǎn).

1)求證:平面;

2)若二面角,,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸的正半軸上,過點(diǎn)的直線與拋物線相交于,兩點(diǎn),且滿足

(1)求拋物線的方程;

(2)若是拋物線上的動(dòng)點(diǎn),點(diǎn)軸上,圓內(nèi)切于,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>R的函數(shù),若函數(shù)是奇函數(shù),則稱為正弦奇函數(shù).已知 是單調(diào)遞增的正弦奇函數(shù),其值域?yàn)?/span>R,.

1)已知是正弦奇函數(shù),證明:為方程的解的充要條件是為方程的解;

2)若,求的值;

3)證明:是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,為垂足,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)在線段上,且,點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)過拋物線的焦點(diǎn)作直線交拋物線于,兩點(diǎn),過且與直線垂直的直線交曲線于另一點(diǎn),求面積的最小值,以及取得最小值時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案