在3000到8000之間有多少個(gè)無重復(fù)數(shù)字的奇數(shù)?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:分兩類,一類是以3、5、7為首位的四位奇數(shù),一類是一類是以3、5、7為首位的四位奇數(shù),根據(jù)分類計(jì)數(shù)原理可得答案
解答: 解:分兩類;一類是以3、5、7為首位的四位奇數(shù),可分三步完成:先排首位有3種方法,再排個(gè)位有4種方法,最后排中間兩個(gè)數(shù)位有8×7種方法,所以共有3×4×8×7=672個(gè).另一類是首位是4或6的四位奇數(shù),也可以3步完成,共有2×5×8×7=560個(gè).
由分類計(jì)數(shù)原理得共有672+560=1232個(gè).
點(diǎn)評:本題主要考查了分類和分步計(jì)數(shù)原理,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A、B、C三點(diǎn)共線,則
1
a
+
1
b
的最小值是( 。
A、3+2
2
B、4
2
C、6
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(2x+
π
6
)+
3
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)求函數(shù)f(x)的對稱軸方程及對稱中心;
(3)當(dāng)x∈(0,
π
2
)時(shí),函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)倒立的圓錐,底面半徑為10cm,高為15cm,先將一定量的水注入其中,其形成的圓錐高為hcm,底面半徑為rcm
(1)求水的體積;
(2)若形成的圓錐的體積恰為原來圓錐體積的一半,求h的值(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB⊥AD,AB⊥BC,∠BCD與∠ADC的平分線相交于AB上的一點(diǎn)E,以AB為直徑作圓,則該圓與邊DC有怎樣的位置關(guān)系?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且sinα:sin
α
2
=8:5,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)是圓C:(x-1)2+(y-1)2=1上的點(diǎn),則
y+1
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在不為零的常數(shù)T,使得函數(shù)y=f(x)對定義域內(nèi)的任意x均有f(x+T)=f(x),則稱函數(shù)y=f(x)為周期函數(shù),其中常數(shù)T就是函數(shù)的一個(gè)周期.
(1)證明:若存在不為零的常數(shù)a使得函數(shù)y=f(x)對定義域內(nèi)的任一x均有f(x+a)=-f(x),則此函數(shù)是周期函數(shù);
(2)若定義在R上的奇函數(shù)y=f(x)滿足f(x+1)=-f(x),試探究此函數(shù)在區(qū)間[-2008,2008]內(nèi)的零點(diǎn)的最少個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an},是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16
(1)求數(shù)列{an}的通項(xiàng)公式
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>30n+400?若存在,求n的最小值;若不存在,說明理由.
(3)若數(shù)列{an}和數(shù)列{bn}滿足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n為正整數(shù)),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案