【題目】如圖,在四棱錐 中,底面 是平行四邊形,側(cè)面 底面 , 分別為 的中點(diǎn), , , .

(1)求證: 平面 ;
(2)求證:平面 平面 .

【答案】
(1)解:連結(jié) ,因?yàn)榈酌? 是正方形,所以 中點(diǎn),

中,又 中點(diǎn),所以 ,
又因?yàn)? 平面 , 平面
所以 平面 .
(2)解:在 中,因?yàn)? , ,由余弦定理得:
所以 ,
因?yàn)槠矫? 底面 ,且平面 平面 ,
平面 ,所以 平面
因?yàn)? 平面 ,所以平面 平面 .
【解析】(1)要證明直線與平面平行,則要在平面內(nèi)找到一條與已知直線平行的直線即可.
(2)通過一個(gè)平面圖中的一條直線與另一個(gè)平面圖垂直可以證明兩個(gè)平面圖垂直.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面平行的判定的相關(guān)知識(shí),掌握判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線的兩個(gè)平面平行,以及對平面與平面垂直的判定的理解,了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)設(shè)函數(shù) ,求 的最大值;
(2)試判斷方程 內(nèi)存在根的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列,

1求數(shù)列的通項(xiàng)公式;

2,求證: ;

3是否存在正整數(shù),使得對任意正整數(shù)均成立?若存在,求出的最大值,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) ,圓 ,過點(diǎn) 的直線l與圓 交于 兩點(diǎn),線段 的中點(diǎn)為 不同于 ),若 ,則l的方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x2﹣m,g(x)=3ex﹣6(1﹣m)x﹣3(m∈R,e為自然對數(shù)底數(shù)).
(1)試討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng)m>0,且x>0時(shí),總有g(shù)(x)>f'(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明:f(x)+|f(x)﹣2|≥2;
(2)當(dāng)x≠﹣1時(shí),求y= 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 中,角 的對邊分別為 ,且 .
(1)求 Δ A B C 的面積;
(2)求 Δ A B C 中最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) = ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.[- ,1)
B.[-
C.[ ,
D.[ ,1)

查看答案和解析>>

同步練習(xí)冊答案