(03年北京卷理)橢圓為參數(shù))的焦點(diǎn)坐標(biāo)為(   )

      A.(0,0),(0,-8)                               B.(0,0),(-8,0)

      C.(0,0),(0,8)                                  D.(0,0),(8,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(15分)

如圖,已知橢圓的長(zhǎng)軸軸平行,短軸軸上,中心

(Ⅰ)寫出橢圓方程并求出焦點(diǎn)坐標(biāo)和離心率;

(Ⅱ)設(shè)直線與橢圓交于,),直線與橢圓次于,).求證:

(Ⅲ)對(duì)于(Ⅱ)中的在,設(shè)軸于點(diǎn),軸于點(diǎn),求證:(證明過程不考慮垂直于軸的情形)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(14分)

有三個(gè)新興城鎮(zhèn)分別位于、三點(diǎn)處,且,今計(jì)劃合建一個(gè)中心醫(yī)院,為同時(shí)方便三鎮(zhèn),準(zhǔn)備建在的垂直平分線上的點(diǎn)處(建立坐標(biāo)系如圖).

(Ⅰ)若希望點(diǎn)到三鎮(zhèn)距離的平方和最小,則應(yīng)位于何處?

(Ⅱ)若希望點(diǎn)到三鎮(zhèn)的最遠(yuǎn)距離為最小,則應(yīng)位于何處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(14分)

設(shè)是定義在區(qū)間上的函數(shù),且滿足條件,

②對(duì)任意的、,都有

(Ⅰ)證明:對(duì)任意,都有

(Ⅱ)證明:對(duì)任意的都有

(Ⅲ)在區(qū)間上是否存在滿足題設(shè)條件的奇函數(shù)且使得

若存在請(qǐng)舉一例,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)極坐標(biāo)方程表示的曲線是

(A)圓   (B)橢圓   。–)拋物線   (D)雙曲線

查看答案和解析>>

同步練習(xí)冊(cè)答案