已知直線l1
3
x+y=0,且l1⊥l2,則l2的傾斜角為( 。
A、
6
B、
π
6
C、kπ+
5
6
π,k∈z
D、2kπ+,k∈z
考點:直線的傾斜角
專題:直線與圓
分析:利用相互垂直的直線斜率之間的關系即可得出.
解答: 解:設l2的傾斜角為θ,
由直線l1
3
x+y=0,可得k1=-
3

∵l1⊥l2,∴-
3
tanθ=-1
,
化為tanθ=
3
3

∵θ∈[0,π),
θ=
π
6

則l2的傾斜角為
π
6

故選:B.
點評:本題考查了相互垂直的直線斜率之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線tx2+y2-1=0的一條漸近線與直線2x+y+t=0垂直,則t=( 。
A、-
1
2
B、
1
2
C、-
1
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|x2-1>0},B={x|log2x<0},則A∩B=( 。
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設隨機變量X的分布列如下表,則DX=( 。
X012
P0.20.2y
A、0.64B、1.2
C、1.6D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
為單位向量,則下列正確的是( 。
A、
a
-
b
=0
B、
a
+
b
=2
a
=2
b
C、|
a
|-|
b
|=0
D、
a
b
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:“任意x>1,a-lnx<0”為真命題的一個充分不必要條件是( 。
A、a≤0B、a<0
C、a≥0D、a>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列5個判斷:
①任取x∈R,都有3x>2x; 
②當a>1時任取x∈R都有ax>a-x
③函數(shù)y=(
2
-x是增函數(shù); 
④函數(shù)y=2|x|的最小值是1;
⑤在同一坐標系中函數(shù)y=2x與y=2-x的圖象關于y軸對稱.
其中正確的是( 。
A、①②④B、④⑤
C、②③④D、①⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3
x3-ax2-x,(x∈R)
(1)若函數(shù)f(x)在點A(1,f(1))處的切線達到斜率的最小值,求a的值;
(2)函數(shù)g(x)=f′(x)+alnx,且g(x)恒有兩個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足條件:對于任意的x,y∈R,f(x+y)=f(x)+f(y),當x>0時,f(x)<0.
(1)求f(0)的值;       
(2)討論f(x)的奇偶性和單調(diào)性.
(3)當x>0時,對于f(x)總有f(1-m)+f(1-m2)<0,求m的取值范圍.

查看答案和解析>>

同步練習冊答案