已知x≥1,y≥1,x2y=100,則(lgx)•(lgy)的范圍是
 
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:由條件利用基本不等式求得(lgx)•(lgy)的范圍.
解答: 解:∵x≥1,y≥1,∴l(xiāng)gx>0,lgy>0,
∴(lgx)•(lgy)=
1
2
(2lgx)•(lgy)≤
1
2
(
2lgx+lgy
2
)
2
=
1
2
(
lgx2+lgy
2
)
2
=
1
2
(
lg1000
2
)
2
=
9
8

當(dāng)且僅當(dāng)2lgx=lgy,即x2=y=
1000
時(shí),等號(hào)成立,故 0<(lgx)•(lgy)≤
9
8

故答案為:(0,
9
8
].
點(diǎn)評(píng):本題主要考查注意檢驗(yàn)等號(hào)成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=5x3+7x+1,f(a)=3,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2-2與橢圓x2+
y2
2
=1有四個(gè)交點(diǎn),這四個(gè)交點(diǎn)共圓,則該圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正三棱臺(tái)的上下底面邊長(zhǎng)分別為3cm、6cm,高是
3
2
cm,求此三棱臺(tái)的:
(1)側(cè)棱長(zhǎng);
(2)斜高;
(3)體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,直線 A1C與平面ABCD所成角的正弦值等于( 。
A、
2
3
B、
5
3
C、
2
5
5
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+
y2
b2
=1的離心率e=
5
-1
2
,A是左頂點(diǎn),F(xiàn)是右焦點(diǎn),B是短軸的一個(gè)端點(diǎn),則∠ABF=( 。
A、30°B、45°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求使下列函數(shù)取得最大值,最小值的自變量的集合,并寫(xiě)出最大值,最小值各是多少.
(1)y=2sinx,x∈(-
3
2
π,2π)
(2)y=2-cos
x
3
,x∈(-
π
4
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-
π
4
,
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=2,a4=16,數(shù)列{bn}是等差數(shù)列,且b3=a3,b5=a5,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)的和Sn
(Ⅲ)求數(shù)列{|bn|}前n項(xiàng)的和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案