分析 (1)先設(shè)出所求矩陣,利用待定系數(shù)法建立一個(gè)四元一次方程組,解方程組即可;
(2)先設(shè)P(x,y)是曲線(xiàn)C上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣T對(duì)應(yīng)變換作用下新曲線(xiàn)上的對(duì)應(yīng)點(diǎn),根據(jù)矩陣變換求出P與P1的關(guān)系,代入已知曲線(xiàn)求出所求曲線(xiàn)即可.
解答 解:(1)設(shè)矩陣M=$[\begin{array}{l}{a}&\\{c}&6oiuajk\end{array}]$,根據(jù)題意得$[\begin{array}{l}{a}&\\{c}&j1p7aax\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,則$\left\{\begin{array}{l}{x′=ax+by}\\{y′=cx+dy}\end{array}\right.$,
A(2,0),變換為A'(2,2),得:a=1,c=1,
B(0,$\sqrt{3}$)變換為B'(-$\sqrt{3}$,$\sqrt{3}$),得:b=-1,d=1,
∴矩陣M=$[\begin{array}{l}{1}&{-1}\\{1}&{1}\end{array}]$;
(2)變換T所對(duì)應(yīng)關(guān)系$\left\{\begin{array}{l}{x′=x-y}\\{y′=x+y}\end{array}\right.$,
代入x2-y2=4,得:xy=-1,
若曲線(xiàn)C:xy=-1,在變換T的作用下所得到的曲線(xiàn)的方程為x2-y2=4,
曲線(xiàn)C的方程xy=-1.
點(diǎn)評(píng) 本題主要考查來(lái)了逆矩陣與投影變換,考查計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$a | B. | $\frac{1}{2}$a | C. | $\frac{1}{4}$a | D. | ($\sqrt{2}$-1)a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com